Review of Data Analytics for Condition Monitoring of Railway Track Geometry

轨道几何 磁道(磁盘驱动器) 人工神经网络 计算机科学 断层(地质) 可靠性工程 工程类 数据挖掘 机器学习 操作系统 地质学 地震学
作者
Alfredo Peinado Gonzalo,Richard Horridge,Heather Steele,Edward Stewart,Mani Entezami
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (12): 22737-22754 被引量:26
标识
DOI:10.1109/tits.2022.3214121
摘要

Railway track geometry varies along routes depending on topographical, operational and safety constraints. Tracks are prone to degrade over time due to various factors, with deviations from the original geometry design having potential implications for comfort and safety. Regular inspections are carried out to evaluate track condition and determine whether maintenance interventions should be undertaken to correct track geometry. The dynamic measurement of track geometry parameters generates large volumes of data that must be analysed to evaluate track degradation. This work comprehensively explains how track quality is evaluated, introducing four main categories of factors affecting it. These are track design, loading, environment and maintenance. The most common techniques applied to evaluate track condition and predict degradation and faults, categorised into statistical, Machine Learning, Big Data and other, are also introduced. Specifically, the influence of each factor on track geometry is stated and the common techniques applied to each factor determined from this review. The utility of loading and maintenance data for fault prediction depend on the availability of records, whilst the impact of environmental conditions is expected to become increasingly important due to climate change. Artificial Neural Networks, Bayesian models and regression are the most applied techniques for determining track degradation behaviour and fault prediction, considering several different factors in their models. Increasingly sophisticated algorithms can consider multiple factors in tandem to predict faults based on the unique conditions of specified tracks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
外向的问儿完成签到 ,获得积分10
刚刚
可爱鹤轩完成签到,获得积分10
刚刚
咕噜咕噜完成签到,获得积分10
刚刚
勇敢牛牛完成签到,获得积分10
刚刚
柳暗花明完成签到 ,获得积分10
1秒前
uu发布了新的文献求助30
1秒前
Violet完成签到,获得积分10
1秒前
坚果发布了新的文献求助10
2秒前
顺子发布了新的文献求助10
3秒前
3秒前
aa发布了新的文献求助10
3秒前
4秒前
4秒前
Joanna完成签到,获得积分10
4秒前
PCX完成签到,获得积分10
4秒前
hysci888发布了新的文献求助10
5秒前
小蘑菇应助聪慧的致远采纳,获得10
6秒前
6秒前
7秒前
9秒前
10秒前
生动访云发布了新的文献求助10
11秒前
可爱的函函应助hysci888采纳,获得10
11秒前
李健应助第七个星球采纳,获得10
12秒前
飞快的不愁完成签到,获得积分10
13秒前
坚果完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
wbbb完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
ccy发布了新的文献求助10
14秒前
123完成签到,获得积分10
14秒前
15秒前
uu完成签到,获得积分10
15秒前
沉静的树叶完成签到,获得积分20
15秒前
16秒前
甜甜吐司完成签到,获得积分10
16秒前
科目三应助娜行采纳,获得10
17秒前
kuku完成签到,获得积分10
17秒前
17秒前
共享精神应助悦耳的初瑶采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5761330
求助须知:如何正确求助?哪些是违规求助? 5529204
关于积分的说明 15399327
捐赠科研通 4897847
什么是DOI,文献DOI怎么找? 2634502
邀请新用户注册赠送积分活动 1582599
关于科研通互助平台的介绍 1537903