Multi-path convolutional neural network in fundus segmentation of blood vessels

人工智能 计算机科学 特征提取 卷积神经网络 分割 眼底(子宫) 特征(语言学) 滤波器(信号处理) 图像分割 模式识别(心理学) 计算机视觉 高斯模糊 图像处理 图像(数学) 医学 眼科 图像复原 语言学 哲学
作者
Chun Tian,Tao Fang,Yingle Fan,Wei Wu
出处
期刊:Biocybernetics and Biomedical Engineering [Elsevier]
卷期号:40 (2): 583-595 被引量:53
标识
DOI:10.1016/j.bbe.2020.01.011
摘要

Abstract There is a close correlation between retinal vascular status and physical diseases such as eye lesions. Retinal fundus images are an important basis for diagnosing diseases such as diabetes, glaucoma, hypertension, coronary heart disease, etc. Because the thickness of the retinal blood vessels is different, the minimum diameter is only one or two pixels wide, so obtaining accurate measurement results becomes critical and challenging. In this paper, we propose a new method of retinal blood vessel segmentation that is based on a multi-path convolutional neural network, which can be used for computer-based clinical medical image analysis. First, a low-frequency image characterizing the overall characteristics of the retinal blood vessel image and a high-frequency image characterizing the local detailed features are respectively obtained by using a Gaussian low-pass filter and a Gaussian high-pass filter. Then a feature extraction path is constructed for the characteristics of the low- and high-frequency images, respectively. Finally, according to the response results of the low-frequency feature extraction path and the high-frequency feature extraction path, the whole blood vessel perception and local feature information fusion coding are realized, and the final blood vessel segmentation map is obtained. The performance of this method is evaluated and tested by DRIVE and CHASE_DB1. In the experimental results of the DRIVE database, the evaluation indexes accuracy (Acc), sensitivity (SE), and specificity (SP) are 0.9580, 0.8639, and 0.9665, respectively, and the evaluation indexes Acc, SE, and SP of the CHASE_DB1 database are 0.9601, 0.8778, and 0.9680, respectively. In addition, the method proposed in this paper could effectively suppress noise, ensure continuity after blood vessel segmentation, and provide a feasible new idea for intelligent visual perception of medical images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
RUI1128完成签到,获得积分10
刚刚
1秒前
本是个江湖散人完成签到,获得积分10
1秒前
天天快乐应助mushiyu采纳,获得10
1秒前
tjnusq发布了新的文献求助10
1秒前
JamesPei应助YY采纳,获得10
2秒前
搜集达人应助七慕凉采纳,获得10
2秒前
高挑的凤灵完成签到 ,获得积分10
2秒前
2秒前
2秒前
自由南松发布了新的文献求助20
2秒前
科研通AI6应助安阳采纳,获得10
2秒前
3秒前
高贵的张张完成签到,获得积分10
3秒前
zhang发布了新的文献求助10
3秒前
无奈的曼彤完成签到 ,获得积分10
3秒前
Nolan发布了新的文献求助10
3秒前
4秒前
5秒前
kkk完成签到 ,获得积分10
5秒前
7秒前
宿雨发布了新的文献求助10
7秒前
8秒前
9秒前
9秒前
9秒前
科研通AI6应助lyy采纳,获得10
10秒前
丘比特应助一行采纳,获得10
10秒前
温柔诗柳完成签到,获得积分20
11秒前
科研通AI6应助一一采纳,获得10
11秒前
RUI1128发布了新的文献求助10
11秒前
hjin完成签到,获得积分10
11秒前
NexusExplorer应助夏夏夏安采纳,获得10
11秒前
慕青应助qqsaosa采纳,获得10
12秒前
limin发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
zhang完成签到,获得积分10
13秒前
H星科23456发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5626987
求助须知:如何正确求助?哪些是违规求助? 4712947
关于积分的说明 14960796
捐赠科研通 4783234
什么是DOI,文献DOI怎么找? 2554596
邀请新用户注册赠送积分活动 1516222
关于科研通互助平台的介绍 1476527