Improved 1 km resolution PM2.5 estimates across China using enhanced space–time extremely randomized trees

环境科学 气溶胶 气动直径 卫星 微粒 污染 空气污染 均方误差 大气科学 空气质量指数 中分辨率成像光谱仪 气象学 遥感 化学 数学 统计 地理 物理 天文 有机化学 生物 生态学
作者
Jing Wei,Zhanqing Li,Maureen Cribb,Wei Huang,Wenhao Xue,Lin Sun,Jianping Guo,Yiran Peng,Jing Li,Alexei Lyapustin,Lei Liu,Hao Wu,Yimeng Song
出处
期刊:Atmospheric Chemistry and Physics [Copernicus Publications]
卷期号:20 (6): 3273-3289 被引量:508
标识
DOI:10.5194/acp-20-3273-2020
摘要

Abstract. Fine particulate matter with aerodynamic diameters ≤2.5 µm (PM2.5) has adverse effects on human health and the atmospheric environment. The estimation of surface PM2.5 concentrations has made intensive use of satellite-derived aerosol products. However, it has been a great challenge to obtain high-quality and high-resolution PM2.5 data from both ground and satellite observations, which is essential to monitor air pollution over small-scale areas such as metropolitan regions. Here, the space–time extremely randomized trees (STET) model was enhanced by integrating updated spatiotemporal information and additional auxiliary data to improve the spatial resolution and overall accuracy of PM2.5 estimates across China. To this end, the newly released Moderate Resolution Imaging Spectroradiometer Multi-Angle Implementation of Atmospheric Correction AOD product, along with meteorological, topographical and land-use data and pollution emissions, was input to the STET model, and daily 1 km PM2.5 maps for 2018 covering mainland China were produced. The STET model performed well, with a high out-of-sample (out-of-station) cross-validation coefficient of determination (R2) of 0.89 (0.88), a low root-mean-square error of 10.33 (10.93) µg m−3, a small mean absolute error of 6.69 (7.15) µg m−3 and a small mean relative error of 21.28 % (23.69 %). In particular, the model captured well the PM2.5 concentrations at both regional and individual site scales. The North China Plain, the Sichuan Basin and Xinjiang Province always featured high PM2.5 pollution levels, especially in winter. The STET model outperformed most models presented in previous related studies, with a strong predictive power (e.g., monthly R2=0.80), which can be used to estimate historical PM2.5 records. More importantly, this study provides a new approach for obtaining high-resolution and high-quality PM2.5 dataset across mainland China (i.e., ChinaHighPM2.5), important for air pollution studies focused on urban areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助鄂惜霜采纳,获得10
1秒前
吴锦珑完成签到,获得积分10
1秒前
小马甲应助闪亮的季节采纳,获得10
1秒前
踏实的哈密瓜完成签到,获得积分10
1秒前
甜甜忆山发布了新的文献求助10
2秒前
2秒前
碧蓝的若风完成签到,获得积分10
2秒前
Jasper应助兴奋晟睿采纳,获得10
2秒前
铃槐完成签到,获得积分10
3秒前
JiaQi发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
niyatingde发布了新的文献求助10
4秒前
zjz9928发布了新的文献求助10
4秒前
4秒前
852应助唠叨的月光采纳,获得10
5秒前
Childwild应助阿瑞采纳,获得10
5秒前
走四方发布了新的文献求助10
5秒前
5秒前
溪风完成签到,获得积分10
5秒前
sandy发布了新的文献求助10
6秒前
6秒前
充电宝应助F503采纳,获得10
6秒前
英俊的铭应助多多采纳,获得10
7秒前
ppboyindream发布了新的文献求助10
7秒前
7秒前
独特星月发布了新的文献求助10
7秒前
情怀应助冷静的服饰采纳,获得10
8秒前
科研通AI6应助麦苗采纳,获得10
8秒前
无极微光应助大反应釜采纳,获得20
8秒前
8秒前
灵巧水蓝完成签到 ,获得积分10
8秒前
9秒前
研友_n0DQAn发布了新的文献求助10
9秒前
9秒前
淡定山柏发布了新的文献求助10
9秒前
10秒前
victorchen完成签到,获得积分10
10秒前
爆米花应助动人的小馒头采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
饲料原料图鉴与质量控制手册 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4864233
求助须知:如何正确求助?哪些是违规求助? 4157602
关于积分的说明 12889883
捐赠科研通 3910534
什么是DOI,文献DOI怎么找? 2148108
邀请新用户注册赠送积分活动 1166876
关于科研通互助平台的介绍 1068950