纳米技术
生物传感器
碳纳米管
材料科学
纳米材料
分子
生物分子
化学
有机化学
标识
DOI:10.1002/adma.201301219
摘要
Abstract Interactions between biological molecules are fundamental to biology. Probing the complex behaviors of biological systems at the molecular level provides new opportunities to uncover the wealth of molecular information that is usually hidden in conventional ensemble experiments and address the “unanswerable” questions in the physical, chemical and biological sciences. Nanometer‐scale materials are particularly well matched with biomolecular interactions due to their biocompatibility, size comparability, and remarkable electrical properties, thus setting the basis for biological sensing with ultrahigh sensitivity. This brief review aims to highlight the recent progress of the burgeoning field of single‐molecule electrical biosensors based on nanomaterials, with a particular focus on single‐walled carbon nanotubes (SWNTs), for better understanding of the molecular structure, interacting dynamics, and molecular functions. The perspectives and key issues that will be critical to the success of next‐generation single‐molecule biosensors toward practical applications are also discussed, such as the device reproducibility, system integration, and theoretical simulation.
科研通智能强力驱动
Strongly Powered by AbleSci AI