数学
椭圆算子
光谱(功能分析)
操作员(生物学)
拉普拉斯算子
本征函数
连接(主束)
特征向量
数学分析
拉普拉斯变换
纯数学
几何学
物理
生物化学
量子力学
基因
抑制因子
转录因子
化学
作者
Raffaella Servadei,Enrico Valdinoci
出处
期刊:Proceedings
[Cambridge University Press]
日期:2014-07-24
卷期号:144 (4): 831-855
被引量:295
标识
DOI:10.1017/s0308210512001783
摘要
In this paper we deal with two non-local operators that are both well known and widely studied in the literature in connection with elliptic problems of fractional type. More precisely, for a fixed s ∈ (0,1) we consider the integral definition of the fractional Laplacian given by where c ( n, s ) is a positive normalizing constant, and another fractional operator obtained via a spectral definition, that is, where e i , λ i are the eigenfunctions and the eigenvalues of the Laplace operator −Δ in Ω with homogeneous Dirichlet boundary data, while a i represents the projection of u on the direction e i . The aim of this paper is to compare these two operators, with particular reference to their spectrum, in order to emphasize their differences.
科研通智能强力驱动
Strongly Powered by AbleSci AI