去铁胺
伤口愈合
新生血管
药理学
医学
炎症
化学
血管生成
内科学
免疫学
作者
Asif Qayoom,V. A. Aneesha,S. Anagha,Javeed Ahmad Dar,Pawan Kumar,Dinesh Kumar
标识
DOI:10.1016/j.ejphar.2019.172478
摘要
Nanoparticles have higher frequency of being exposed to cells or tissue, and are thus more likely to gain access into cytoplasm or nuclei to modulate molecular events due to significantly larger surface area to volume ratio. As a result, they present amplified response or even different physiochemical and biomedical properties from bigger particles. Deferoxamine accelerates wound healing in diabetic rats by increased neovascularization, reduced inflammation and improved maturation of wound. We investigated the wound healing potential of deferoxamine-nanoparticles in diabetic rats. Lecithin based nanoparticles of deferoxamine were prepared and characterized. The diabetic rats were divided into five Groups, of which Group I was treated with pluronic-gel f-127 (25%), Group II with deferoxamine 0.1% and Group III, IV and V were treated with deferoxamine-nanoparticles incorporated in pluronic-gel f-127 25% at 0.03% (0.01% deferoxamine), 0.1% (0.03% deferoxamine) and 0.3% (0.1% deferoxamine) w/v respectively. The wound closure was significantly accelerated in group V as compared to control groups. HIF-1α, VEGF, SDF-1α, TGF-β1, and IL-10 protein levels were significantly higher in group V. The collagen deposition and neovascularization was greater in deferoxamine-nanoparticle treated rats. In contrast, TNF-α level was lowest in group V. In summary, the deferoxamine-nanoparticle formulation we developed, when applied topically on diabetic wounds results in faster wound healing as compared to simple deferoxamine formulation. This formulation may prove to be an effective therapy for treatment of diabetic wounds.
科研通智能强力驱动
Strongly Powered by AbleSci AI