Intelligent disassembly of electric-vehicle batteries: a forward-looking overview

重新使用 瓶颈 电动汽车 利用 工程类 风险分析(工程) 系统工程 计算机科学 计算机安全 业务 嵌入式系统 功率(物理) 物理 量子力学 废物管理
作者
Kai Meng,Guiyin Xu,Xianghui Peng,Kamal Youcef‐Toumi,Ju Li
出处
期刊:Resources Conservation and Recycling [Elsevier BV]
卷期号:182: 106207-106207 被引量:93
标识
DOI:10.1016/j.resconrec.2022.106207
摘要

Retired electric-vehicle lithium-ion battery (EV-LIB) packs pose severe environmental hazards. Efficient recovery of these spent batteries is a significant way to achieve closed-loop lifecycle management and a green circular economy. It is crucial for carbon neutralization, and for coping with the environmental and resource challenges associated with the energy transition. EV-LIB disassembly is recognized as a critical bottleneck for mass-scale recycling. Automated disassembly of EV-LIBs is extremely challenging due to the large variety and uncertainty of retired EV-LIBs. Recent advances in artificial intelligence (AI) machine learning (ML) provide new ways for addressing these problems. This study aims to provide a systematic review and forward-looking perspective on how AI/ML methodology can significantly boost EV-LIB intelligent disassembly for achieving sustainable recovery. This work examines the key advances and research opportunities of emerging intelligent technologies for EV-LIB disassembly, and recycling and reuse of industrial products in general. We show that AI could benefit the whole disassembly process, particularly addressing the uncertainty and safety issues. Currently, EV-LIB state prognostics, disassembly decision-making as well as target detection are indicated as promising areas to realize intelligence. The challenges still exist for extensive autonomy due to present AI's inherent limitations, mechanical and chemical complexities, and sustainable benefits concerns. This paper provides the practical map to direct how to implement EV-LIB intelligent disassembly as well as forward-looking perspectives for addressing these challenges.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
麻果应助lelele采纳,获得10
1秒前
斯文败类应助浩西采纳,获得10
2秒前
故意的雅容完成签到,获得积分10
2秒前
赘婿应助aaaa采纳,获得10
4秒前
5秒前
隐形曼青应助zjluo采纳,获得30
5秒前
5秒前
大聪明发布了新的文献求助10
6秒前
7秒前
8秒前
916应助故意的雅容采纳,获得10
8秒前
科目三应助大胆尔冬采纳,获得10
8秒前
苏苏发布了新的文献求助10
9秒前
飞飞鱼发布了新的文献求助10
11秒前
11秒前
天天就是我完成签到,获得积分10
12秒前
脑洞疼应助Clover采纳,获得10
12秒前
papa发布了新的文献求助10
13秒前
传奇3应助酷炫思菱采纳,获得10
14秒前
14秒前
拼搏老鼠完成签到,获得积分10
14秒前
ziyue发布了新的文献求助10
15秒前
16秒前
苏苏完成签到,获得积分10
18秒前
18秒前
Wang完成签到,获得积分10
19秒前
19秒前
德拉科完成签到,获得积分10
19秒前
19秒前
20秒前
小胡发布了新的文献求助10
21秒前
xq1699应助li采纳,获得10
22秒前
25秒前
25秒前
CodeCraft应助ginkrice采纳,获得10
26秒前
29秒前
周亭发布了新的文献求助10
29秒前
子川完成签到,获得积分10
29秒前
Akim应助平安如意采纳,获得10
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Implantable Technologies 500
Digital predistortion of memory polynomial systems using direct and indirect learning architectures 500
Theories of Human Development 400
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3918566
求助须知:如何正确求助?哪些是违规求助? 3463945
关于积分的说明 10931003
捐赠科研通 3192030
什么是DOI,文献DOI怎么找? 1763992
邀请新用户注册赠送积分活动 854528
科研通“疑难数据库(出版商)”最低求助积分说明 794337