Geographical origin traceability of traditional Chinese medicine Atractylodes macrocephala Koidz. by using multi-way fluorescence fingerprint and chemometric methods

指纹(计算) 可追溯性 偏最小二乘回归 主成分分析 计算机科学 模式识别(心理学) 人工智能 数据挖掘 集合(抽象数据类型) 数学 统计 机器学习 程序设计语言
作者
Yue‐Yue Chang,Hai‐Long Wu,Tong Wang,Yao Chen,Jian Yang,Haiyan Fu,Xiao‐Long Yang,Xu-Fu Li,Gong Zhang,Ru‐Qin Yu
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:269: 120737-120737 被引量:23
标识
DOI:10.1016/j.saa.2021.120737
摘要

Atractylodes macrocephala Koidz. (AM) is an important plant of traditional Chinese medicine (TCM), and its status can be comparable with ginseng in China. The efficacy and quality of AM are closely related to the place of origin. Hence, we proposed a simple and fast strategy to classify AM from different geographical origins by using multi-way fluorescence fingerprint combined with chemometric methods. AM samples with different dilution levels have different fluorescence characteristics, resulting from different content of fluorescence components and chemical microenvironment. Therefore, AM samples were diluted 5-fold, 10-fold, and 20-fold with 40% ethanol aqueous solution to obtain excitation-emission matrix data, and multi-way (three-way and four-way) data arrays were constructed. And then, the fluorescence fingerprints of AM samples were characterized by three-way and four-way parallel factor analysis (PARAFAC). In addition, four pattern recognition methods were used to classify AM from different provinces. The results show that the four-way data array can provide more abundant information than three-way data arrays, so it is more conducive to sample classification. According to the results obtained from the analysis of four-way data array, the correct classification rate (CCR) of the cross-validation and prediction set obtained by partial least squares-discrimination analysis (PLS-DA) were 90.5% and 100%, respectively. To sum up, the proposed method can be regarded as a powerful, feasible, convenient, reliable, and universal classification tool for the classification of AM samples from different provinces and can be used as a promising method to realize the geographical origin traceability of other TCMs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
吐丝麵包完成签到,获得积分10
2秒前
3秒前
FashionBoy应助撒西不理采纳,获得10
5秒前
5秒前
追风少年发布了新的文献求助10
7秒前
8秒前
001完成签到,获得积分10
9秒前
南城发布了新的文献求助10
9秒前
水水的发布了新的文献求助10
9秒前
传奇3应助烤冷面采纳,获得10
10秒前
小罗同学发布了新的文献求助10
10秒前
莫道桑榆完成签到,获得积分10
11秒前
Enoch发布了新的文献求助10
11秒前
12秒前
corleeang完成签到 ,获得积分10
12秒前
12秒前
夏沫完成签到,获得积分10
13秒前
13秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
牛牛完成签到,获得积分10
14秒前
王瑶发布了新的文献求助20
15秒前
提提发布了新的文献求助10
16秒前
健壮雨兰完成签到,获得积分10
18秒前
撒西不理发布了新的文献求助10
18秒前
倪妮完成签到,获得积分10
18秒前
yys发布了新的文献求助10
19秒前
卢建烨完成签到,获得积分10
20秒前
我是老大应助ian采纳,获得10
20秒前
20秒前
Infinity完成签到,获得积分10
21秒前
Rocks完成签到,获得积分10
22秒前
003完成签到,获得积分10
23秒前
糖宝完成签到 ,获得积分0
24秒前
大模型应助加油采纳,获得30
25秒前
mao完成签到 ,获得积分10
25秒前
2896186249发布了新的文献求助10
27秒前
乐观若烟完成签到 ,获得积分10
27秒前
量子星尘发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5057345
求助须知:如何正确求助?哪些是违规求助? 4282678
关于积分的说明 13346384
捐赠科研通 4099744
什么是DOI,文献DOI怎么找? 2244412
邀请新用户注册赠送积分活动 1250543
关于科研通互助平台的介绍 1181032