吸附
水溶液
化学
粉煤灰
朗缪尔吸附模型
朗缪尔
水溶液中的金属离子
铜
工业废水处理
核化学
废水
金属
材料科学
废物管理
有机化学
工程类
作者
Jingjie Yang,Hongjuan Sun,Tongjiang Peng,Li Zeng,Xin Zhou
标识
DOI:10.3390/ijerph19020616
摘要
Non-biodegradable copper (Cu) and lead (Pb) contaminants in water are highly toxic and have series adverse effects. Therefore, it is very important to extract heavy metals from wastewater before it is discharged into the environment. Adsorption is a cost-effective alternative method for wastewater treatment. Choosing a low-cost adsorbent can help reduce the cost of adsorption. In this study, conversion of reside after extracting aluminum (REA) produced by sub-molten salt method transform high-alumina coal fly ash (CFA) into 11Å-tobermorite to adsorb Cu(II) and Pb(II) from aqueous solutions at room temperature. The synthesis of the adsorbent was confirmed using scanning electron microscope (SEM), X-ray diffractometer (XRD) and Brunauer–Emmett–Teller (BET) method surface analysis. To study the adsorption characteristics, factors such as initial Cu(II) and Pb(II) concentration, pH, contact time, adsorption characteristics and temperature were investigated in batch mode. The maximum adsorption capacity of Cu(II) and Pb(II) was 177.1 mg·g−1 and 176.2 mg·g−1, respectively. The Langmuir adsorption model was employed to better describe the isothermal adsorption behavior and confirm the monolayer adsorption phenomenon. The pseudo-second-order kinetic model was used to highlight Cu(II) and Pb(II) adsorption kinetics. Thermodynamic analysis indicated the removal Cu(II) and Pb(II) by TA-adsorbent was a nonspontaneous and exothermic reaction. The obtained results are of great significance to the conversion of industrial waste to low-cost adsorbent for Cu(II) and Pb(II) removal from water.
科研通智能强力驱动
Strongly Powered by AbleSci AI