Unraveling the origin of extra strengthening in gradient nanotwinned metals

微尺度化学 可塑性 位错 材料科学 变形(气象学) 工作(物理) 纳米结构 同种类的 压力(语言学) 复合材料 纳米技术 物理 统计物理学 数学 语言学 哲学 数学教育 热力学
作者
Zhaohui Cheng,Linfeng Bu,Yin Zhang,Huan Wu,Ting Zhu,Huajian Gao,Lei Lü
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:119 (3) 被引量:31
标识
DOI:10.1073/pnas.2116808119
摘要

Materials containing heterogeneous nanostructures hold great promise for achieving superior mechanical properties. However, the strengthening effect due to plastically inhomogeneous deformation in heterogeneous nanostructures has not been clearly understood. Here, we investigate a prototypical heterogeneous nanostructured material of gradient nanotwinned (GNT) Cu to unravel the origin of its extra strength arising from gradient nanotwin structures relative to uniform nanotwin counterparts. We measure the back and effective stresses of GNT Cu with different nanotwin thickness gradients and compare them with those of homogeneous nanotwinned Cu with different uniform nanotwin thicknesses. We find that the extra strength of GNT Cu is caused predominantly by the extra back stress resulting from nanotwin thickness gradient, while the effective stress is almost independent of the gradient structures. The combined experiment and strain gradient plasticity modeling show that an increasing structural gradient in GNT Cu produces an increasing plastic strain gradient, thereby raising the extra back stress. The plastic strain gradient is accommodated by the accumulation of geometrically necessary dislocations inside an unusual type of heterogeneous dislocation structure in the form of bundles of concentrated dislocations. Such a heterogeneous dislocation structure produces microscale internal stresses leading to the extra back stress in GNT Cu. Altogether, this work establishes a fundamental connection between the gradient structure and extra strength in GNT Cu through the mechanistic linkages of plastic strain gradient, heterogeneous dislocation structure, microscale internal stress, and extra back stress. Broadly, this work exemplifies a general approach to unraveling the strengthening mechanisms in heterogeneous nanostructured materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
火星上的雨莲完成签到,获得积分10
2秒前
忧郁的风华完成签到,获得积分10
2秒前
763完成签到 ,获得积分10
2秒前
MFNM完成签到,获得积分10
2秒前
3秒前
圆圆完成签到,获得积分10
3秒前
橙子完成签到,获得积分10
4秒前
道交法完成签到,获得积分10
4秒前
木樨完成签到,获得积分10
4秒前
Blaseaka完成签到 ,获得积分10
4秒前
顾矜应助jiangqingquan采纳,获得10
4秒前
5秒前
5秒前
卓涵柏完成签到,获得积分10
7秒前
8秒前
AHR完成签到,获得积分10
9秒前
李小鑫吖完成签到,获得积分10
9秒前
领导范儿应助golfgold采纳,获得10
9秒前
木子完成签到,获得积分10
9秒前
levoglucosan完成签到,获得积分10
11秒前
EasonYao发布了新的文献求助10
11秒前
zhuzhu完成签到,获得积分10
11秒前
AHR发布了新的文献求助10
11秒前
积极乐观阳光开朗完成签到,获得积分10
12秒前
木子发布了新的文献求助10
13秒前
JackWang618完成签到,获得积分10
13秒前
周小鱼完成签到,获得积分10
13秒前
田様应助Maomaojiangjiang采纳,获得10
13秒前
欢喜的难破完成签到,获得积分10
14秒前
喵啊呜小可爱完成签到,获得积分10
14秒前
小蘑菇应助科研不是科幻采纳,获得10
15秒前
小二郎应助zhangzhang采纳,获得10
15秒前
选课完成签到,获得积分10
15秒前
lq完成签到,获得积分10
15秒前
woobinhua完成签到,获得积分10
15秒前
15秒前
wfy1227完成签到,获得积分10
16秒前
认真生活完成签到,获得积分10
16秒前
小吴完成签到,获得积分10
16秒前
笨笨乘风完成签到,获得积分10
17秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804329
求助须知:如何正确求助?哪些是违规求助? 3349122
关于积分的说明 10341845
捐赠科研通 3065225
什么是DOI,文献DOI怎么找? 1682994
邀请新用户注册赠送积分活动 808620
科研通“疑难数据库(出版商)”最低求助积分说明 764620