Early Quality Classification and Prediction of Battery Cycle Life in Production Using Machine Learning

人工神经网络 人工智能 电池(电) 机器学习 生产(经济) 质量(理念) 计算机科学 预测建模 吞吐量 可靠性工程 工程类 哲学 宏观经济学 物理 经济 功率(物理) 认识论 无线 电信 量子力学
作者
Sandro Stock,Sebastian Pohlmann,Florian J. Günter,Lucas Hille,Jan Hagemeister,Gunther Reinhart
出处
期刊:Journal of energy storage [Elsevier BV]
卷期号:50: 104144-104144 被引量:54
标识
DOI:10.1016/j.est.2022.104144
摘要

An accurate determination of the product quality is one of the key challenges in lithium-ion battery (LIB) production. Since LIBs are complex, electrochemical systems, conventional quality control measures such as aging are time-intensive and costly. This paper presents the applicability of machine learning approaches for an early quality prediction and a classification of cells in production. Using inline measurement data of 29 NMC111/graphite pouch cells, linear regression models and artificial neural networks (ANNs) were compared regarding their prediction accuracy. From comprehensive electrochemical impedance spectroscopy (EIS) and cycling datasets, a total of 24 features were extracted, combined, and analyzed. The best ANN achieved a test error of 10.1% at an observation time of less than two days. For a classification into two cycle life groups, a maximum accuracy of 97% was reached. Moreover, a reliable classification of high-lifetime cells was achieved using only EIS measurements during wetting. The results highlight the great potential of data-driven models for the prediction of LIB quality in production as well as their implementation to increase the throughput and the overall cell quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助米兰无敌采纳,获得10
1秒前
xy完成签到,获得积分10
1秒前
李末发布了新的文献求助10
1秒前
4秒前
笨笨的太清完成签到,获得积分10
5秒前
善学以致用应助少艾采纳,获得10
6秒前
6秒前
6秒前
A.M给A.M的求助进行了留言
7秒前
zxh_完成签到,获得积分10
7秒前
8秒前
9秒前
所所应助牛超采纳,获得10
9秒前
花融应助稳重的香萱采纳,获得10
10秒前
科研通AI6应助稳重的香萱采纳,获得10
10秒前
NexusExplorer应助窝撅的海星采纳,获得10
10秒前
所所应助西西采纳,获得10
11秒前
无终发布了新的文献求助10
11秒前
11秒前
松果发布了新的文献求助10
11秒前
我是老大应助菜鸟小鱼采纳,获得10
12秒前
12秒前
12秒前
海岸发布了新的文献求助10
13秒前
在水一方应助mistletoe采纳,获得10
14秒前
Fly发布了新的文献求助10
14秒前
NexusExplorer应助a15670270171采纳,获得10
15秒前
16秒前
16秒前
17秒前
17秒前
original发布了新的文献求助10
18秒前
19秒前
19秒前
aaaab完成签到,获得积分20
19秒前
19秒前
直率的豆芽完成签到,获得积分10
20秒前
酷波er应助海岸采纳,获得10
21秒前
guihai发布了新的文献求助10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5263289
求助须知:如何正确求助?哪些是违规求助? 4423914
关于积分的说明 13771219
捐赠科研通 4298936
什么是DOI,文献DOI怎么找? 2358826
邀请新用户注册赠送积分活动 1355088
关于科研通互助平台的介绍 1316312