Combining Himawari-8 AOD and deep forest model to obtain city-level distribution of PM2.5 in China.

环境科学 空间分布 中国 气溶胶 大气科学 自然地理学 分布(数学)
作者
Zhihao Song,Bin Chen,Jianping Huang
出处
期刊:Environmental Pollution [Elsevier BV]
卷期号:297: 118826-118826
标识
DOI:10.1016/j.envpol.2022.118826
摘要

PM2.5 (fine particulate matter with aerodynamics diameter <2.5 μm) is the most important component of air pollutants, and has a significant impact on the atmospheric environment and human health. Using satellite remote sensing aerosol optical depth (AOD) to explore the hourly ground PM2.5 distribution is very helpful for PM2.5 pollution control. In this study, Himawari-8 AOD, meteorological factors, geographic information, and a new deep forest model were used to construct an AOD-PM2.5 estimation model in China. Hourly cross-validation results indicated that estimated PM2.5 values were consistent with the site observation values, with an R2 range of 0.82-0.91 and root mean square error (RMSE) of 8.79-14.72 μg/m³, among which the model performance reached the optimum value between 13:00 and 15:00 Beijing time (R2 > 0.9). Analysis of the correlation coefficient between important features and PM2.5 showed that the model performance was related to AOD and affected by meteorological factors, particularly the boundary layer height. Deep forest can detect diurnal variations in pollutant concentrations, which were higher in the morning, peaked at 10:00-11:00, and then began to decline. High-resolution PM2.5 concentrations derived from the deep forest model revealed that some cities in China are seriously polluted, such as Xi 'an, Wuhan, and Chengdu. Our model can also capture the direction of PM2.5, which conforms to the wind field. The results indicated that due to the combined effect of wind and mountains, some areas in China experience PM2.5 pollution accumulation during spring and winter. We need to be vigilant because these areas with high PM2.5 concentrations typically occur near cities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
短巷完成签到 ,获得积分10
刚刚
SicilyD完成签到 ,获得积分10
5秒前
5秒前
CipherSage应助hugeng采纳,获得10
5秒前
逍遥发布了新的文献求助10
6秒前
梅子完成签到 ,获得积分10
7秒前
痴情的博超完成签到,获得积分10
8秒前
灵感大王喵完成签到 ,获得积分10
10秒前
月光族完成签到,获得积分10
10秒前
11秒前
12秒前
instanc通完成签到,获得积分20
12秒前
13秒前
大模型应助执着盼夏采纳,获得10
14秒前
zhuwg发布了新的文献求助30
16秒前
山阴路没有夏天完成签到,获得积分10
19秒前
益笙鸿老板完成签到,获得积分10
19秒前
淡定的半梦完成签到 ,获得积分10
20秒前
hs完成签到,获得积分10
21秒前
23秒前
Serena完成签到,获得积分10
23秒前
26秒前
打打应助lemonyu采纳,获得10
28秒前
水知寒完成签到,获得积分10
30秒前
执着盼夏发布了新的文献求助10
32秒前
ding应助11采纳,获得10
33秒前
yinzzzzzzz发布了新的文献求助10
34秒前
34秒前
暴躁汉堡完成签到,获得积分10
36秒前
coolkid应助湖以采纳,获得10
37秒前
翁雁丝发布了新的文献求助10
37秒前
liu123456完成签到,获得积分10
37秒前
充电宝应助lemonyu采纳,获得10
39秒前
40秒前
40秒前
Cyan发布了新的文献求助10
40秒前
feijelly完成签到,获得积分10
43秒前
执着盼夏完成签到,获得积分20
44秒前
思源应助ZR采纳,获得10
44秒前
yinzzzzzzz完成签到,获得积分10
44秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846100
求助须知:如何正确求助?哪些是违规求助? 3388485
关于积分的说明 10553181
捐赠科研通 3109045
什么是DOI,文献DOI怎么找? 1713300
邀请新用户注册赠送积分活动 824692
科研通“疑难数据库(出版商)”最低求助积分说明 774982