The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019

土地覆盖 环境科学 卫星 地理 随机森林 计算机科学 中国 分类器(UML) 比例(比率) 土地利用 气象学 自然地理学 气候学 遥感 地图学 机器学习 人工智能 地质学 土木工程 航空航天工程 考古 工程类
作者
Jie Yang,Xin Huang
出处
期刊:Earth System Science Data [Copernicus Publications]
卷期号:13 (8): 3907-3925 被引量:2517
标识
DOI:10.5194/essd-13-3907-2021
摘要

Abstract. Land cover (LC) determines the energy exchange, water and carbon cycle between Earth's spheres. Accurate LC information is a fundamental parameter for the environment and climate studies. Considering that the LC in China has been altered dramatically with the economic development in the past few decades, sequential and fine-scale LC monitoring is in urgent need. However, currently, fine-resolution annual LC dataset produced by the observational images is generally unavailable for China due to the lack of sufficient training samples and computational capabilities. To deal with this issue, we produced the first Landsat-derived annual China land cover dataset (CLCD) on the Google Earth Engine (GEE) platform, which contains 30 m annual LC and its dynamics in China from 1990 to 2019. We first collected the training samples by combining stable samples extracted from China's land-use/cover datasets (CLUDs) and visually interpreted samples from satellite time-series data, Google Earth and Google Maps. Using 335 709 Landsat images on the GEE, several temporal metrics were constructed and fed to the random forest classifier to obtain classification results. We then proposed a post-processing method incorporating spatial–temporal filtering and logical reasoning to further improve the spatial–temporal consistency of CLCD. Finally, the overall accuracy of CLCD reached 79.31 % based on 5463 visually interpreted samples. A further assessment based on 5131 third-party test samples showed that the overall accuracy of CLCD outperforms that of MCD12Q1, ESACCI_LC, FROM_GLC and GlobeLand30. Besides, we intercompared the CLCD with several Landsat-derived thematic products, which exhibited good consistencies with the Global Forest Change, the Global Surface Water, and three impervious surface products. Based on the CLCD, the trends and patterns of China's LC changes during 1985 and 2019 were revealed, such as expansion of impervious surface (+148.71 %) and water (+18.39 %), decrease in cropland (−4.85 %) and grassland (−3.29 %), and increase in forest (+4.34 %). In general, CLCD reflected the rapid urbanization and a series of ecological projects (e.g. Gain for Green) in China and revealed the anthropogenic implications on LC under the condition of climate change, signifying its potential application in the global change research. The CLCD dataset introduced in this article is freely available at https://doi.org/10.5281/zenodo.4417810 (Yang and Huang, 2021).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
an完成签到,获得积分10
刚刚
2秒前
升龙击完成签到,获得积分10
2秒前
3秒前
小马甲应助小马采纳,获得10
6秒前
12138完成签到,获得积分10
9秒前
周小熊完成签到 ,获得积分10
9秒前
大模型应助yushiolo采纳,获得10
9秒前
明天见完成签到,获得积分10
10秒前
10秒前
tian发布了新的文献求助10
11秒前
小蘑菇应助老福贵儿采纳,获得30
14秒前
2号完成签到,获得积分10
15秒前
爆米花应助Ania99采纳,获得10
15秒前
dddyyyn完成签到 ,获得积分10
15秒前
机灵凌雪完成签到,获得积分20
19秒前
19秒前
aging00完成签到,获得积分10
22秒前
小灰灰完成签到 ,获得积分10
23秒前
丰知然应助羟醛缩合采纳,获得10
25秒前
DWQ发布了新的文献求助10
25秒前
纯真玉兰完成签到 ,获得积分10
26秒前
leclerc完成签到,获得积分10
26秒前
aging00发布了新的文献求助10
26秒前
NexusExplorer应助风趣的老四采纳,获得20
26秒前
付品聪发布了新的文献求助10
27秒前
和谐寒安完成签到,获得积分20
27秒前
赵润泽完成签到 ,获得积分10
28秒前
三方完成签到,获得积分10
29秒前
29秒前
30秒前
EarendilK完成签到,获得积分10
30秒前
Elite发布了新的文献求助30
33秒前
顺心若之发布了新的文献求助10
34秒前
笨笨摇伽完成签到,获得积分10
34秒前
幽默的南蕾完成签到 ,获得积分10
34秒前
天天快乐应助奥福采纳,获得10
35秒前
王启月完成签到,获得积分10
35秒前
量子星尘发布了新的文献求助10
35秒前
shionn完成签到,获得积分10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604106
求助须知:如何正确求助?哪些是违规求助? 4688956
关于积分的说明 14857141
捐赠科研通 4696700
什么是DOI,文献DOI怎么找? 2541175
邀请新用户注册赠送积分活动 1507328
关于科研通互助平台的介绍 1471851