DNAzyme-Based Biosensors: Immobilization Strategies, Applications, and Future Prospective

脱氧核酶 生物传感器 纳米技术 适体 材料科学 计算机科学 生化工程 化学 DNA 生物 工程类 生物化学 遗传学
作者
Shadman Khan,Brenda Burciu,Carlos D. M. Filipe,Yingfu Li,Kristen Dellinger,Tohid F. Didar
出处
期刊:ACS Nano [American Chemical Society]
卷期号:15 (9): 13943-13969 被引量:213
标识
DOI:10.1021/acsnano.1c04327
摘要

Since their discovery almost three decades ago, DNAzymes have been used extensively in biosensing. Depending on the type of DNAzyme being used, these functional oligonucleotides can act as molecular recognition elements within biosensors, offering high specificity to their target analyte, or as reporters capable of transducing a detectable signal. Several parameters need to be considered when designing a DNAzyme-based biosensor. In particular, given that many of these biosensors immobilize DNAzymes onto a sensing surface, selecting an appropriate immobilization strategy is vital. Suboptimal immobilization can result in both DNAzyme detachment and poor accessibility toward the target, leading to low sensing accuracy and sensitivity. Various approaches have been employed for DNAzyme immobilization within biosensors, ranging from amine and thiol-based covalent attachment to non-covalent strategies involving biotin–streptavidin interactions, DNA hybridization, electrostatic interactions, and physical entrapment. While the properties of each strategy inform its applicability within a proposed sensor, the selection of an appropriate strategy is largely dependent on the desired application. This is especially true given the diverse use of DNAzyme-based biosensors for the detection of pathogens, metal ions, and clinical biomarkers. In an effort to make the development of such sensors easier to navigate, this paper provides a comprehensive review of existing immobilization strategies, with a focus on their respective advantages, drawbacks, and optimal conditions for use. Next, common applications of existing DNAzyme-based biosensors are discussed. Last, emerging and future trends in the development of DNAzyme-based biosensors are discussed, and gaps in existing research worthy of exploration are identified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ekko完成签到,获得积分10
1秒前
2秒前
6秒前
7秒前
YY完成签到 ,获得积分10
8秒前
星黛露发布了新的文献求助10
10秒前
hahhha发布了新的文献求助10
11秒前
阿巴阿巴发布了新的文献求助10
12秒前
852应助花花采纳,获得10
16秒前
专注的筝完成签到 ,获得积分10
21秒前
22秒前
在水一方应助星黛露采纳,获得10
23秒前
26秒前
摸鱼仙人完成签到,获得积分10
39秒前
R喵喵完成签到 ,获得积分10
51秒前
52秒前
苹果老三完成签到,获得积分10
52秒前
53秒前
ding应助Xingkun_li采纳,获得10
54秒前
JOKY完成签到,获得积分10
54秒前
55秒前
文文完成签到,获得积分10
56秒前
Nature_PhD发布了新的文献求助10
57秒前
十九发布了新的文献求助30
57秒前
老实寒云发布了新的文献求助10
58秒前
1分钟前
Dragon完成签到,获得积分10
1分钟前
Nature_PhD完成签到,获得积分10
1分钟前
JamesPei应助重要的绯采纳,获得10
1分钟前
Gary完成签到,获得积分10
1分钟前
天天快乐应助十九采纳,获得30
1分钟前
1分钟前
1分钟前
ZHANG完成签到,获得积分10
1分钟前
科研小白发布了新的文献求助10
1分钟前
1分钟前
1分钟前
整齐芷文完成签到,获得积分10
1分钟前
1分钟前
俏皮梦桃发布了新的文献求助10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776474
求助须知:如何正确求助?哪些是违规求助? 3321968
关于积分的说明 10208252
捐赠科研通 3037252
什么是DOI,文献DOI怎么找? 1666613
邀请新用户注册赠送积分活动 797594
科研通“疑难数据库(出版商)”最低求助积分说明 757872