亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Discovering the tourists' behaviors and perceptions in a tourism destination by analyzing photos' visual content with a computer deep learning model: The case of Beijing

北京 旅游 广告 感知 内容(测量理论) 目的地 计算机科学 地理 营销 人工智能 业务 心理学 中国 数学 考古 神经科学 数学分析
作者
Kun Zhang,Ye Chen,Chunlin Li
出处
期刊:Tourism Management [Elsevier]
卷期号:75: 595-608 被引量:295
标识
DOI:10.1016/j.tourman.2019.07.002
摘要

Abstract Visual content analysis of tourist photos is an effective way to excavate tourist behavior and explore tourists' cognition in the tourism destination. With the development of computer deep learning and big data mining technology, identifying the content of massive numbers of tourist photos by Artificial Intelligence (AI) approaches breaks through the limitations of manual approaches of identifying photos' visual information, e.g. small sample size, complex identification process and results deviation. In this study, 35,356 Flickr tourists' photos in Beijing were identified into 103 scenes by computer deep learning technology. Comparison through statistical analysis for behaviors and perceptions of tourists from different continents and countries was conducted. Tourists' cognitive maps with different perceptual themes were visualized according to photos' geographical information by ArcGIS. The field of how to apply AI technology into tourism destination research was explored and extended by this trial study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Becky完成签到 ,获得积分10
2秒前
2秒前
在水一方完成签到 ,获得积分0
4秒前
AWESOME Ling完成签到,获得积分10
6秒前
AWESOME Ling发布了新的文献求助10
8秒前
张杰列夫完成签到 ,获得积分10
16秒前
苹果牌牛仔裤完成签到,获得积分10
33秒前
CodeCraft应助ceeray23采纳,获得20
45秒前
53秒前
田様应助ceeray23采纳,获得20
54秒前
科研通AI2S应助科研通管家采纳,获得10
55秒前
andrele应助科研通管家采纳,获得10
55秒前
55秒前
科研通AI2S应助科研通管家采纳,获得10
56秒前
Akim应助科研通管家采纳,获得10
56秒前
情怀应助ceeray23采纳,获得20
58秒前
英俊的铭应助ceeray23采纳,获得20
1分钟前
1分钟前
开朗的大叔完成签到 ,获得积分10
1分钟前
wanci应助ceeray23采纳,获得20
1分钟前
1分钟前
1分钟前
充电宝应助xiaojin采纳,获得10
1分钟前
秀丽小猫咪应助VDC采纳,获得200
1分钟前
1分钟前
xiaojin发布了新的文献求助10
1分钟前
1分钟前
小蘑菇应助Nature_Science采纳,获得10
1分钟前
在水一方应助QQWQEQRQ采纳,获得10
1分钟前
1分钟前
1分钟前
诚心幻莲发布了新的文献求助10
1分钟前
共享精神应助反恐分子采纳,获得10
1分钟前
1分钟前
1分钟前
包破茧发布了新的文献求助20
1分钟前
不知终日梦为鱼完成签到,获得积分10
1分钟前
1分钟前
1分钟前
QQWQEQRQ发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606566
求助须知:如何正确求助?哪些是违规求助? 4691039
关于积分的说明 14866783
捐赠科研通 4707670
什么是DOI,文献DOI怎么找? 2542899
邀请新用户注册赠送积分活动 1508211
关于科研通互助平台的介绍 1472276