纳米团簇
范德瓦尔斯力
分子动力学
星团(航天器)
材料科学
纳米晶材料
原子间势
密度泛函理论
势能面
化学物理
原子物理学
物理化学
物理
从头算
计算化学
纳米技术
化学
分子
程序设计语言
量子力学
计算机科学
作者
Ning Wang,Shiping Huang
出处
期刊:Physical review
[American Physical Society]
日期:2020-09-30
卷期号:102 (9)
被引量:13
标识
DOI:10.1103/physrevb.102.094111
摘要
We introduce a machine-learning (ML) interatomic potential for Mg-H system based on Behler-Parrinello approach. In order to fit the complex bonding conditions in the cluster structure, we combine multiple sampling strategies to obtain training samples that contain a variety of local atomic environments. First-principles calculations based on density functional theory (DFT) are employed to get reference energies and forces for training the ML potential. For the calculation of bulk properties, phonon dispersion, gas-phase ${\mathrm{H}}_{2}$ interactions, and the potential energy surface (PES) for ${\mathrm{H}}_{2}$ dissociative adsorption on Mg(0001) surfaces, our ML potential has reached DFT accuracy at the level of GGA-PBE, and can be extended by combining the DFT-D3 method to describe van der Waals interaction. Moreover, through molecular dynamics (MD) simulations based on the ML potential, we find that for ${\mathrm{Mg}}_{n}{\mathrm{H}}_{m}$ clusters, $\mathrm{Mg}/\mathrm{Mg}{\mathrm{H}}_{x}$ phase separation occurs when $m<2n$, and for a cluster with a diameter of about 4 nm, the Mg part of the cluster forms a hexagonal close-packed (hcp) nanocrystalline structure at low temperature. Also, the calculated diffusion coefficients reproduce the experimental values and confirm an Arrhenius type temperature dependence in the range of 400 to 700 K.
科研通智能强力驱动
Strongly Powered by AbleSci AI