Smart "Predict, then Optimize"

计算机科学 数学优化 组分(热力学) 功能(生物学) 最优化问题 算法 数学 进化生物学 生物 热力学 物理
作者
Adam N. Elmachtoub,Paul Grigas
出处
期刊:Cornell University - arXiv 被引量:34
摘要

Many real-world analytics problems involve two significant challenges: prediction and optimization. Due to the typically complex nature of each challenge, the standard paradigm is predict-then-optimize. By and large, machine learning tools are intended to minimize prediction error and do not account for how the predictions will be used in the downstream optimization problem. In contrast, we propose a new and very general framework, called Smart Predict, then Optimize (SPO), which directly leverages the optimization problem structure, i.e., its objective and constraints, for designing better prediction models. A key component of our framework is the SPO loss function which measures the decision error induced by a prediction. Training a prediction model with respect to the SPO loss is computationally challenging, and thus we derive, using duality theory, a convex surrogate loss function which we call the SPO+ loss. Most importantly, we prove that the SPO+ loss is statistically consistent with respect to the SPO loss under mild conditions. Our SPO+ loss function can tractably handle any polyhedral, convex, or even mixed-integer optimization problem with a linear objective. Numerical experiments on shortest path and portfolio optimization problems show that the SPO framework can lead to significant improvement under the predict-then-optimize paradigm, in particular when the prediction model being trained is misspecified. We find that linear models trained using SPO+ loss tend to dominate random forest algorithms, even when the ground truth is highly nonlinear.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
土木研学僧完成签到,获得积分10
3秒前
君克渡完成签到,获得积分10
3秒前
hh完成签到,获得积分10
3秒前
fa完成签到,获得积分10
4秒前
李健应助keyan采纳,获得10
5秒前
十月完成签到 ,获得积分10
5秒前
xlk2222完成签到,获得积分10
8秒前
赵小满完成签到 ,获得积分10
9秒前
英勇的红酒完成签到 ,获得积分10
10秒前
kannar完成签到,获得积分10
11秒前
towanda完成签到,获得积分10
11秒前
Evan123完成签到,获得积分10
12秒前
JY完成签到,获得积分10
12秒前
望望旺仔牛奶完成签到,获得积分10
13秒前
lili完成签到 ,获得积分10
13秒前
现代CC完成签到 ,获得积分10
13秒前
SYLH应助默默的巧荷采纳,获得10
14秒前
852应助Lvy采纳,获得30
15秒前
吕布完成签到,获得积分10
16秒前
含蓄绿兰完成签到,获得积分10
16秒前
林撞树完成签到,获得积分10
16秒前
16秒前
Liang完成签到,获得积分10
17秒前
落后乐荷发布了新的文献求助10
17秒前
EOFG0PW完成签到,获得积分10
17秒前
duoduozs完成签到,获得积分10
17秒前
甜甜凉面完成签到,获得积分10
19秒前
Kriemhild完成签到,获得积分10
20秒前
wwqc完成签到,获得积分0
20秒前
20秒前
严锦强完成签到,获得积分10
20秒前
云ch完成签到,获得积分10
21秒前
keyan发布了新的文献求助10
21秒前
修好世界完成签到,获得积分10
22秒前
张文静完成签到,获得积分10
22秒前
QQ不需要昵称完成签到,获得积分10
23秒前
浮光完成签到,获得积分10
23秒前
免疫方舟完成签到,获得积分10
23秒前
称心采枫完成签到 ,获得积分0
23秒前
鸭鸭完成签到 ,获得积分10
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3938000
求助须知:如何正确求助?哪些是违规求助? 3483445
关于积分的说明 11023179
捐赠科研通 3213369
什么是DOI,文献DOI怎么找? 1776194
邀请新用户注册赠送积分活动 862348
科研通“疑难数据库(出版商)”最低求助积分说明 798440