Optimization of Exhaust Muffler Design Variables for Transmission Loss Using Coupling of modeFRONTIER and GT-POWER

消声器 传输损耗 优化设计 噪音(视频) 声学 分类 工程类 计算机科学 机械工程 算法 物理 图像(数学) 机器学习 人工智能
作者
Diwakar Hiwale,Vilas Bijwe,Rohit Vaidya,Yuvraj Chavan
出处
期刊:SAE International Journal of Advances and Current Practices in Mobility 卷期号:4 (2): 411-418 被引量:1
标识
DOI:10.4271/2021-01-1042
摘要

<div class="section abstract"><div class="htmlview paragraph">Exhaust Noise attenuation is one of the important functions of exhaust muffler. Transmission Loss (TL) is a measure of noise attenuation used in designing exhaust mufflers for NVH. TL is a logarithmic difference between inlet and outlet pressures for unit velocity input at inlet of the muffler and anechoic termination at outlet of the muffler as boundary conditions. TL amplitude and its frequency tuning depends on a combination of various muffler design parameters like volume, length, muffler cross section, pipe cross sections, pipe perforations, number of chambers, baffle perforations, etc. Achieving the desired TL performance with no valleys over a wide frequency range is very challenging. Manual design iterations with large numbers of permutations and combinations of design variables are difficult and time-consuming. It also needs a highly experienced professional to balance TL performance, design variables and design constraints. The current paper discusses an exhaust muffler TL optimization simulation process that couples modeFRONTIER for DOEs, &amp; GT-POWER, for acoustic simulation. All identified design variables are iterated in batch mode within specified design limits. DOEs are set up using Non-dominated Sorting Genetic Algorithm (NSGA) or Multi Objective Genetic Algorithm (MOGA) in modeFRONTIER. Based upon pre-defined iterative simulation cycles, muffler design is optimized to meet design constraints and TL performance. This optimization helps to reduce manual efforts in building simulation models, to carry out more iterations, to reduce solver time, to reduce manual intervention for post processing, and to give optimized TL performance.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助呼呼采纳,获得10
刚刚
Lucas应助sdl采纳,获得10
1秒前
JIN发布了新的文献求助30
1秒前
张莎完成签到,获得积分20
1秒前
慕青应助李键刚采纳,获得10
2秒前
vvvvvv应助沉静的歌曲采纳,获得10
2秒前
易波折完成签到,获得积分20
2秒前
曾馨慧发布了新的文献求助10
3秒前
怡书陈完成签到 ,获得积分10
3秒前
3秒前
赵明君发布了新的文献求助10
4秒前
和谐水香完成签到,获得积分10
5秒前
加油杨完成签到 ,获得积分10
5秒前
sunyue完成签到,获得积分10
6秒前
丹丹完成签到,获得积分10
6秒前
阿航完成签到,获得积分10
7秒前
小猫宝完成签到,获得积分20
7秒前
风格完成签到,获得积分10
7秒前
华hua完成签到,获得积分10
7秒前
7秒前
排骨炖豆角完成签到,获得积分10
9秒前
21完成签到,获得积分10
9秒前
magicjerry发布了新的文献求助10
9秒前
Lina发布了新的文献求助30
9秒前
风起云涌龙完成签到 ,获得积分10
10秒前
xiaoyangke完成签到,获得积分10
11秒前
十年HLX完成签到 ,获得积分10
11秒前
Bin_Liu发布了新的文献求助10
11秒前
12秒前
kakakakak完成签到,获得积分10
12秒前
12秒前
aimer完成签到,获得积分10
13秒前
14秒前
drl完成签到,获得积分10
14秒前
sanmu发布了新的文献求助10
15秒前
lz完成签到 ,获得积分10
15秒前
万能图书馆应助洁净白容采纳,获得10
15秒前
16秒前
jiayou完成签到,获得积分10
16秒前
16秒前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3820413
求助须知:如何正确求助?哪些是违规求助? 3363363
关于积分的说明 10422332
捐赠科研通 3081743
什么是DOI,文献DOI怎么找? 1695230
邀请新用户注册赠送积分活动 814963
科研通“疑难数据库(出版商)”最低求助积分说明 768748