Graph-Based Object Detection Enhancement for Symbolic Engineering Drawings

计算机科学 卷积神经网络 图形 人工智能 模式识别(心理学) 目标检测 精确性和召回率 特征工程 深度学习 理论计算机科学
作者
Syed Mizanur Rahman,Johannes Bayer,Andreas Dengel
出处
期刊:Lecture Notes in Computer Science
标识
DOI:10.1007/978-3-030-86198-8_6
摘要

The identification of graphic symbols and interconnections is a primary task in the digitization of symbolic engineering diagram images like circuit diagrams. Recent approaches propose the use of Convolutional Neural Networks to the identification of symbols in engineering diagrams. Although recall and precision from CNN based object recognition algorithms are high, false negatives result in some input symbols being missed or misclassified. The missed symbols induce errors in the circuit level features of the extracted circuit, which can be identified using graph level analysis. In this work, a custom annotated printed circuit image set, which is made publicly available in conjunction with the source code of the experiments of this paper, is used to fine-tune a Faster RCNN network to recognise component symbols and blob detection to identify inter-connections between symbols to generate a graph representation of the extracted circuit components. The graph structure is then analysed using graph convolutional neural networks and node degree comparison to identify graph anomalies potentially resulting from false negatives from the object recognition module. Anomaly predictions are then used to identify image regions with potential missed symbols, which are subject to image transforms and re-input to the Faster RCNN, which results in a significant improvement in component recall, which increases to 91% on the test set. The general tools used by the analysis pipeline can also be applied to other Engineering Diagrams with the availability of similar datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助blue2021采纳,获得10
刚刚
刚刚
TG_FY完成签到,获得积分10
刚刚
1秒前
NexusExplorer应助Gary采纳,获得10
1秒前
whisper完成签到,获得积分20
2秒前
2秒前
乐乐应助miaomiao采纳,获得50
3秒前
4秒前
KEO完成签到,获得积分10
4秒前
阳洋发布了新的文献求助10
4秒前
高贵紫丝发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
whisper发布了新的文献求助10
5秒前
wenran雪发布了新的文献求助10
5秒前
无人喝彩完成签到,获得积分20
6秒前
6秒前
alile发布了新的文献求助10
6秒前
7秒前
科研通AI5应助西奥采纳,获得10
7秒前
7秒前
7秒前
wjy发布了新的文献求助50
7秒前
酷波er应助Fu采纳,获得10
8秒前
8秒前
8秒前
8秒前
嗯哼发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
安心完成签到,获得积分10
10秒前
Japrin完成签到,获得积分10
11秒前
简单平蓝发布了新的文献求助10
11秒前
烂漫青槐应助落寞的发卡采纳,获得10
11秒前
12秒前
12秒前
CodeCraft应助通~采纳,获得10
12秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3839094
求助须知:如何正确求助?哪些是违规求助? 3381478
关于积分的说明 10518394
捐赠科研通 3100886
什么是DOI,文献DOI怎么找? 1707833
邀请新用户注册赠送积分活动 821944
科研通“疑难数据库(出版商)”最低求助积分说明 773056