Transfer State of Health Estimation Based on Cross-Manifold Embedding

计算机科学 非线性降维 软件可移植性 嵌入 机器学习 健康状况 学习迁移 人工智能 电池(电) 歧管(流体力学) 数据挖掘 工程类 功率(物理) 机械工程 物理 降维 程序设计语言 量子力学
作者
Hanmin Sheng,Yuan Zhou,Libing Bai,Lei Shi
出处
期刊:Journal of energy storage [Elsevier]
卷期号:47: 103555-103555 被引量:10
标识
DOI:10.1016/j.est.2021.103555
摘要

The data-driven approach is currently a research hotspot of battery state of health (SOH) estimation. Such methods have advantages in nonlinear fitting; no human intervention is required in their implementation process. In existing research, general data-driven models are developed for specific battery objects. However, different battery objects need to be dealt with in practical applications, and the batteries may have different characteristics. To make SOH estimates for various battery types, electric vehicle maintainers usually require a model to have portability. However, the general machine learning methods are based on the data consistency assumption. The differences in the battery characteristics make the model migration difficult. To address this issue, we propose a novel cross-manifold transfer learning method. This method obtains a small amount of data from the target battery, and at the same time, brings relevant information from related tasks through cross manifold embedding, thereby achieving small sample SOH estimation. Experimental results show that traditional machine learning methods may suffer serious over-fitting problems when the training and target objects are very different. With the cross manifold embedding method, the knowledge learned by data-driven models can be well generalized to unseen battery objects. In this way, a data-driven model can perform a practical SOH estimation with a small amount of target data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
桃桃甜筒发布了新的文献求助30
刚刚
刚刚
1秒前
1秒前
1秒前
1秒前
2秒前
2秒前
猪猪hero完成签到,获得积分10
2秒前
完美世界应助gooooood采纳,获得10
2秒前
3秒前
orixero应助xinxin采纳,获得10
3秒前
八爪完成签到,获得积分10
3秒前
4秒前
FashionBoy应助BLUEEEE采纳,获得10
4秒前
结实星星完成签到,获得积分20
4秒前
大胆的忆安完成签到 ,获得积分10
4秒前
NexusExplorer应助小乐采纳,获得10
4秒前
4秒前
俏皮的短靴完成签到,获得积分10
5秒前
小小学神完成签到,获得积分10
5秒前
热心的曼容完成签到,获得积分10
5秒前
5秒前
赘婿应助妍妍采纳,获得10
5秒前
KYT2025完成签到,获得积分10
5秒前
落寞丹烟发布了新的文献求助10
5秒前
寻光人发布了新的文献求助10
6秒前
6秒前
6秒前
JamesPei应助HY采纳,获得30
6秒前
在水一方应助含蓄冬瓜采纳,获得10
6秒前
灿guo完成签到,获得积分10
7秒前
7秒前
wanglu发布了新的文献求助10
7秒前
笨DD完成签到 ,获得积分10
7秒前
7秒前
舒心易烟完成签到,获得积分10
7秒前
FleeToMars完成签到 ,获得积分10
7秒前
swimming发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5511083
求助须知:如何正确求助?哪些是违规求助? 4605828
关于积分的说明 14495709
捐赠科研通 4540975
什么是DOI,文献DOI怎么找? 2488254
邀请新用户注册赠送积分活动 1470413
关于科研通互助平台的介绍 1442806