A novel remaining useful life prediction method based on gated attention mechanism capsule neural network

稳健性(进化) 人工神经网络 人工智能 计算机科学 特征提取 数据挖掘 模式识别(心理学) 机器学习 工程类 生物化学 基因 化学
作者
Chengying Zhao,Xianzhen Huang,Yuxiong Li,Shangjie Li
出处
期刊:Measurement [Elsevier BV]
卷期号:189: 110637-110637 被引量:19
标识
DOI:10.1016/j.measurement.2021.110637
摘要

High-accuracy remaining useful life (RUL) prediction is helpful to make in-time maintenance scheduling, reduce the waste of resources, and prevent the occurrence of serious accidents. Currently, data-driven RUL prediction methods are widely used in engineering fields due to their simplicity, efficiency, and robustness. In data-driven methods, the RUL is predicted by learning the mapping from the sensor data to the RUL of machinery. However, the sensor data are often disturbed by noises, and the existence of noise can negatively affect the follow-up RUL prediction. Moreover, the uncertainty of the predicted RUL is often ignored. To address the issues, this paper proposes a novel gated attention mechanism capsule neural network (GAM-CapsNet). A gated attention mechanism (GAM) is developed to increase the anti-interference ability of the model against noises and assign large weights to the most important features. In order to improve the feature extraction ability of the model and quantify the uncertainty of the RUL prediction, the primary capsule, digital capsule, and Bayesian layer are implemented in the proposed GAM-CapsNet. The effectiveness and superiority of the GAM-CapsNet model are verified on turbine engine and cutter wear datasets. Compared to state-of-the-art methods, the prediction ability of the GAM-CapsNet on four engine datasets is improved by 1.11%, 13.44%, 3.06%, and 12.49%, respectively. In addition, the prediction ability of the GAM-CapsNet on three cutter wear datasets is improved by 33.82%, 58.95%, and 36.33%, respectively. The experimental results indicate that the GAM-CapsNet model has better prediction performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
豆豆欢欢乐完成签到 ,获得积分10
3秒前
懒羊羊大王完成签到 ,获得积分10
4秒前
了凡完成签到 ,获得积分10
10秒前
10秒前
忧虑的静柏完成签到 ,获得积分10
13秒前
山山而川发布了新的文献求助10
13秒前
cdercder应助科研通管家采纳,获得10
14秒前
cdercder应助科研通管家采纳,获得10
14秒前
归尘应助科研通管家采纳,获得10
14秒前
归尘应助科研通管家采纳,获得10
14秒前
归尘应助科研通管家采纳,获得10
14秒前
风不尽,树不静完成签到 ,获得积分10
19秒前
碧蓝巧荷完成签到 ,获得积分10
29秒前
十三完成签到 ,获得积分10
33秒前
乐人完成签到 ,获得积分10
33秒前
swordshine完成签到,获得积分10
36秒前
wyh295352318完成签到 ,获得积分10
47秒前
老迟到的问安完成签到 ,获得积分10
1分钟前
君无名完成签到 ,获得积分10
1分钟前
Fairy完成签到 ,获得积分10
1分钟前
我是笨蛋完成签到 ,获得积分10
1分钟前
半壶月色半边天完成签到 ,获得积分10
1分钟前
minnie完成签到 ,获得积分10
1分钟前
绿袖子完成签到,获得积分10
1分钟前
慧海拾穗完成签到 ,获得积分10
1分钟前
小李完成签到 ,获得积分10
1分钟前
我很好完成签到 ,获得积分10
1分钟前
珍珠火龙果完成签到 ,获得积分10
1分钟前
elsa622完成签到 ,获得积分10
2分钟前
steven完成签到 ,获得积分10
2分钟前
fqpang完成签到 ,获得积分10
2分钟前
刺猬完成签到,获得积分10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
cdercder应助科研通管家采纳,获得10
2分钟前
cdercder应助科研通管家采纳,获得10
2分钟前
归尘应助科研通管家采纳,获得10
2分钟前
归尘应助科研通管家采纳,获得10
2分钟前
归尘应助科研通管家采纳,获得10
2分钟前
wwj1009完成签到 ,获得积分10
2分钟前
明明完成签到 ,获得积分10
2分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780879
求助须知:如何正确求助?哪些是违规求助? 3326359
关于积分的说明 10226694
捐赠科研通 3041539
什么是DOI,文献DOI怎么找? 1669502
邀请新用户注册赠送积分活动 799081
科研通“疑难数据库(出版商)”最低求助积分说明 758732