MRI‐Based Computer‐Aided Diagnostic Model to Predict Tumor Grading and Clinical Outcomes in Patients With Soft Tissue Sarcoma

列线图 医学 软组织肉瘤 肉瘤 分级(工程) 比例危险模型 软组织 磁共振成像 放射科 人工智能 无线电技术 计算机科学 肿瘤科 内科学 病理 生物 生态学
作者
Yuhan Yang,Yin Zhou,Chen Zhou,Xuemei Zhang,Xuelei Ma
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:56 (6): 1733-1745 被引量:19
标识
DOI:10.1002/jmri.28160
摘要

Background MRI acts as a potential resource for exploration and interpretation to identify tumor characterization by advanced computer‐aided diagnostic (CAD) methods. Purpose To evaluate and validate the performance of MRI‐based CAD models for identifying low‐grade and high‐grade soft tissue sarcoma (STS) and for investigating survival prognostication. Study Type Retrospective. Subjects A total of 540 patients (295 male/female: 295/245, median age: 42 years) with STSs. Field Sequence 5‐T MRI with T 1 WI sequence and fat‐suppressed T 2 ‐weighted ( T 2 FS ) sequence. Assessment Manual regions of interests (ROIs) were delineated for generation of radiomic features. Automatic segmentation and pretrained convolutional neural networks (CNNs) were performed for deep learning (DL) analysis. The last fully connected layer at the top of CNNs was removed, and the global max pooling was added to transform feature maps to numeric values. Tumor grade was determined on histological specimens. Statistical Tests The support vector machine was adopted as the classifier for all MRI‐based models. The DL signature was derived from the DL‐MRI model with the highest area under the curve (AUC). The significant clinical variables, tumor location and size, integrated with radiomics and DL signatures were ready for construction of clinical‐MRI nomogram to identify tumor grading. The prognostic value of clinical variables and these MRI‐based signatures for overall survival (OS) was evaluated via Cox proportional hazard. Results The clinical‐MRI differentiation nomogram represented an AUC of 0.870 in the training cohort, and an AUC of 0.855, accuracy of 79.01%, sensitivity of 79.03%, and specificity of 78.95% in the validation cohort. The prognostic model showed good performance for OS with 3‐year C‐index of 0.681 and 0.642 and 5‐year C‐index of 0.722 and 0.676 in the training and validation cohorts. Data Conclusion MRI‐based CAD nomogram represents effective abilities in classification of low‐grade and high‐grade STSs. The MRI‐based prognostic model yields favorable preoperative capacities to identify long‐term survivals for STSs. Evidence Level 3 Technical Efficacy Stage 4
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
方俊驰完成签到,获得积分10
刚刚
kanong完成签到,获得积分0
3秒前
练得身形似鹤形完成签到 ,获得积分10
7秒前
可爱可愁完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
11秒前
lilylwy完成签到 ,获得积分0
14秒前
冒如怿完成签到,获得积分20
27秒前
chenxiaofang完成签到 ,获得积分10
29秒前
量子星尘发布了新的文献求助10
31秒前
BowieHuang应助冒如怿采纳,获得10
34秒前
博博要毕业完成签到 ,获得积分10
38秒前
解你所忧完成签到 ,获得积分10
43秒前
虚心岂愈完成签到 ,获得积分10
49秒前
jun完成签到,获得积分10
49秒前
zhuxf完成签到 ,获得积分10
49秒前
量子星尘发布了新的文献求助10
49秒前
tianmengkui完成签到 ,获得积分10
50秒前
bksqc完成签到 ,获得积分10
52秒前
qq完成签到 ,获得积分10
56秒前
shhoing应助科研通管家采纳,获得10
58秒前
曾泰平完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
153266916完成签到 ,获得积分10
1分钟前
nano完成签到 ,获得积分10
1分钟前
燕晓啸完成签到 ,获得积分0
1分钟前
12345完成签到 ,获得积分10
1分钟前
曾泰平发布了新的文献求助10
1分钟前
lllllsy完成签到,获得积分10
1分钟前
桔梗完成签到 ,获得积分10
1分钟前
1分钟前
XuNan完成签到,获得积分10
1分钟前
jjgbmt完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
高高高完成签到 ,获得积分10
1分钟前
1分钟前
花花2024完成签到 ,获得积分10
1分钟前
1分钟前
小白果果发布了新的文献求助10
1分钟前
luckweb发布了新的文献求助10
1分钟前
爱可依完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5543698
求助须知:如何正确求助?哪些是违规求助? 4629615
关于积分的说明 14611465
捐赠科研通 4571082
什么是DOI,文献DOI怎么找? 2506067
邀请新用户注册赠送积分活动 1483250
关于科研通互助平台的介绍 1454764