Spatial-frequency-temporal convolutional recurrent network for olfactory-enhanced EEG emotion recognition

脑电图 计算机科学 卷积神经网络 人工智能 模式识别(心理学) 语音识别 情绪识别 心理学 神经科学
作者
Mengxia Xing,Shiang Hu,Bing Wei,Zhao Lv
出处
期刊:Journal of Neuroscience Methods [Elsevier]
卷期号:376: 109624-109624 被引量:23
标识
DOI:10.1016/j.jneumeth.2022.109624
摘要

Multimedia stimulation of brain activity is important for emotion induction. Based on brain activity, emotion recognition using EEG signals has become a hot issue in the field of affective computing.In this paper, we develop a noval odor-video elicited physiological signal database (OVPD), in which we collect the EEG signals from eight participants in positive, neutral and negative emotional states when they are stimulated by synchronizing traditional video content with the odors. To make full use of the EEG features from different domains, we design a 3DCNN-BiLSTM model combining convolutional neural network (CNN) and bidirectional long short term memory (BiLSTM) for EEG emotion recognition. First, we transform EEG signals into 4D representations that retain spatial, frequency and temporal information. Then, the representations are fed into the 3DCNN-BiLSTM model to recognize emotions. CNN is applied to learn spatial and frequency information from the 4D representations. BiLSTM is designed to extract forward and backward temporal dependences.We conduct 5-fold cross validation experiments five times on the OVPD dataset to evaluate the performance of the model. The experimental results show that our presented model achieves an average accuracy of 98.29% with the standard deviation of 0.72% under the olfactory-enhanced video stimuli, and an average accuracy of 98.03% with the standard deviation of 0.73% under the traditional video stimuli on the OVPD dataset in the three-class classification of positive, neutral and negative emotions. To verify the generalisability of our proposed model, we also evaluate this approach on the public EEG emotion dataset (SEED).Compared with other baseline methods, our designed model achieves better recognition performance on the OVPD dataset. The average accuracy of positive, neutral and negative emotions is better in response to the olfactory-enhanced videos than the pure videos for the 3DCNN-BiLSTM model and other baseline methods.The proposed 3DCNN-BiLSTM model is effective by fusing the spatial-frequency-temporal features of EEG signals for emotion recognition. The provided olfactory stimuli can induce stronger emotions than traditional video stimuli and improve the accuracy of emotion recognition to a certain extent. However, superimposing odors unrelated to the video scenes may distract participants' attention, and thus reduce the final accuracy of EEG emotion recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
蔬菜大棚发布了新的文献求助10
1秒前
adadada发布了新的文献求助10
2秒前
852应助tommy999采纳,获得10
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
王美祥发布了新的文献求助10
3秒前
3秒前
4秒前
JIANYOUFU发布了新的文献求助30
4秒前
巴扎嘿完成签到,获得积分10
4秒前
星驰给星驰的求助进行了留言
6秒前
6秒前
wheat完成签到,获得积分10
6秒前
hvgjgfjhgjh发布了新的文献求助10
6秒前
6秒前
JamesPei应助复杂的保温杯采纳,获得10
6秒前
完美世界应助巴扎嘿采纳,获得10
7秒前
懵懂的羽毛完成签到,获得积分10
7秒前
7秒前
7秒前
冉小维完成签到,获得积分10
7秒前
9秒前
sxmt123456789发布了新的文献求助10
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
WANGYU发布了新的文献求助10
12秒前
Jasper应助啦啦啦采纳,获得10
13秒前
健壮问兰发布了新的文献求助10
13秒前
plh发布了新的文献求助10
13秒前
高天雨发布了新的文献求助20
14秒前
spyspy发布了新的文献求助10
14秒前
14秒前
14秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5762565
求助须知:如何正确求助?哪些是违规求助? 5535908
关于积分的说明 15403209
捐赠科研通 4898713
什么是DOI,文献DOI怎么找? 2634982
邀请新用户注册赠送积分活动 1583194
关于科研通互助平台的介绍 1538303