A novel approach for the 3D localization of branch picking points based on deep learning applied to longan harvesting UAVs

人工智能 果园 RGB颜色模型 分割 计算机视觉 计算机科学 数学 园艺 生物
作者
Denghui Li,Xiaoxuan Sun,Shengping Lv,Hamza Elkhouchlaa,Yuhang Jia,Zhongwei Yao,Pei-Yi Lin,Haobo Zhou,Zhengqi Zhou,Jiaxing Shen,Jun Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:199: 107191-107191 被引量:11
标识
DOI:10.1016/j.compag.2022.107191
摘要

Longan is a famous speciality fruit and cultivated medicinal plant that has important edible and medicinal value; how to improve productivity in harvest is an important issue. At present, longan is mainly planted in hilly areas. For complex site conditions and tall trees, the ground harvesting machineries cannot work normally. In this study, aiming at harvesting longan fruit using unmanned aerial vehicles, a method combining an improved YOLOv5s, improved DeepLabv3+ model and depth image information is proposed, which is used for the three-dimensional (3D) positioning of branch picking points in complex natural environments. First, the improved YOLOv5s model is used to quickly detect longan fruit skewers and the main fruit branches from a complex orchard environment. The correct main fruit branch is obtained according to its relative position relationship and is extracted as the input to the semantic segmentation model. Second, using the improved DeepLabv3+ model, the image extracted in the previous step is semantically segmented to obtain the 2D coordinate information of the main longan fruit branches. Finally, combined with the growth characteristics of a longan fruit string, RGB-D information fusion is carried out on the main fruit branches in 3D space to obtain the central axis and pose information of the main fruit branches, and the 3D coordinates of the picking points are calculated, which provides destination information for a longan harvesting drone. To verify the effectiveness of the proposed method, an experiment for identifying and locating the main fruit branches and picking points was carried out in a longan orchard. The experimental results show that the longan string fruit and main fruit branch detection accuracy is 85.50%, and the main fruit branch semantic segmentation accuracy is 94.52%. The whole algorithm takes 0.58 s in the actual scene and can quickly and accurately locate the picking points. In summary, this paper fully exploits the advantages of the combination of a convolutional neural network and RGB-D image information, further improving the efficiency of longan harvesting drones in accurately positioning picking points in 3D space.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
方董发布了新的文献求助10
2秒前
小星发布了新的文献求助10
2秒前
3秒前
xiawanren00完成签到,获得积分10
3秒前
一帆风顺发布了新的文献求助10
4秒前
orixero应助yuaaaann采纳,获得10
4秒前
6秒前
脑洞疼应助无所谓的啦采纳,获得10
7秒前
Ava应助无所谓的啦采纳,获得10
7秒前
dgq_81发布了新的文献求助10
7秒前
Owen应助无所谓的啦采纳,获得10
7秒前
斯文败类应助无所谓的啦采纳,获得10
7秒前
香蕉觅云应助无所谓的啦采纳,获得10
7秒前
研友_VZG7GZ应助无所谓的啦采纳,获得10
7秒前
FashionBoy应助无所谓的啦采纳,获得10
7秒前
烟花应助无所谓的啦采纳,获得10
7秒前
小蘑菇应助无所谓的啦采纳,获得10
8秒前
湖以应助无所谓的啦采纳,获得10
8秒前
超级语芹完成签到,获得积分20
9秒前
赘婿应助syf采纳,获得10
10秒前
11秒前
12秒前
风清扬发布了新的文献求助10
12秒前
jj发布了新的文献求助20
13秒前
control完成签到,获得积分10
15秒前
超级语芹发布了新的文献求助30
15秒前
PA应助XY采纳,获得10
16秒前
sunglow11完成签到,获得积分0
17秒前
bob完成签到,获得积分10
17秒前
dgq_81完成签到,获得积分10
18秒前
俞秋烟发布了新的文献求助10
18秒前
18秒前
18秒前
脑洞疼应助小星采纳,获得10
20秒前
21秒前
李健应助科研通管家采纳,获得10
21秒前
小马甲应助科研通管家采纳,获得10
21秒前
慕青应助科研通管家采纳,获得10
22秒前
顾矜应助科研通管家采纳,获得10
22秒前
充电宝应助科研通管家采纳,获得10
22秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
Dietary intake and glutamine-serine metabolism control pathologic vascular stiffness 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845261
求助须知:如何正确求助?哪些是违规求助? 3387384
关于积分的说明 10549216
捐赠科研通 3108109
什么是DOI,文献DOI怎么找? 1712430
邀请新用户注册赠送积分活动 824404
科研通“疑难数据库(出版商)”最低求助积分说明 774767