Comparing methods for performing trans-ethnic meta-analysis of genome-wide association studies

全基因组关联研究 荟萃分析 生物 遗传关联 遗传学 进化生物学 统计能力 民族 同种类的 计算生物学 基因 单核苷酸多态性 基因型 统计 医学 热力学 社会学 内科学 物理 人类学 数学
作者
Xu Wang,Hui-Xiang Chua,Peng Chen,Rick Twee‐Hee Ong,Xueling Sim,Weihua Zhang,Fumihiko Takeuchi,Xuanyao Liu,Chiea‐Chuen Khor,Wan-Ting Tay,Ching‐Yu Cheng,Chen Suo,Jing Liu,Tin Aung,Kee‐Seng Chia,Jaspal S. Kooner,John C. Chambers,Tien‐Yin Wong,E. Shyong Tai,Norihiro Kato,Yik-Ying Teo
出处
期刊:Human Molecular Genetics [Oxford University Press]
卷期号:22 (11): 2303-2311 被引量:64
标识
DOI:10.1093/hmg/ddt064
摘要

Genome-wide association studies (GWASs) have discovered thousands of variants that are associated with human health and disease. Whilst early GWASs have primarily focused on genetically homogeneous populations of European, East Asian and South Asian ancestries, the next-generation genome-wide surveys are starting to pool studies from ethnically diverse populations within a single meta-analysis. However, classical epidemiological strategies for meta-analyses that assume fixed- or random-effects may not be the most suitable approaches to combine GWAS findings as these either confer low statistical power or identify mostly loci where the variants carry homogeneous effect sizes that are present in most of the studies. In a trans-ethnic meta-analysis, it is likely that some genetic loci will exhibit heterogeneous effect sizes across the populations. This may be due to differences in study designs, differences arising from the interactions with other genetic variants, or genuine biological differences attributed to environmental, dietary or lifestyle factors that modulate the influence of the genes. Here we compare different strategies for meta-analyzing GWAS across genetically diverse populations, where we intentionally vary the effect sizes present across the different populations. We subsequently applied the methods that yielded the highest statistical power to a trans-ethnic meta-analysis of seven GWAS in type 2 diabetes, and showed that these methods identified bona fide associations that would otherwise have been missed by the classical strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
赘婿应助激昂的吐司采纳,获得20
1秒前
所所应助好大一只小坏蛋采纳,获得10
4秒前
Joaquin完成签到 ,获得积分10
5秒前
Akim应助英俊白玉采纳,获得10
6秒前
jenningseastera应助梅哈采纳,获得10
6秒前
Rsquo发布了新的文献求助10
6秒前
小鱼同学完成签到 ,获得积分10
7秒前
万能图书馆应助顺利平文采纳,获得10
7秒前
仲夏发布了新的文献求助10
7秒前
8秒前
奋斗橘子应助东方天奇采纳,获得10
10秒前
Hello应助会撒娇的白昼采纳,获得10
11秒前
ZHANG完成签到,获得积分10
15秒前
大胆的弼发布了新的文献求助10
15秒前
李健的小迷弟应助小飞飞采纳,获得10
16秒前
17秒前
17秒前
maclogos发布了新的文献求助10
18秒前
科研通AI5应助温暖寻琴采纳,获得10
18秒前
天天快乐应助尚可采纳,获得10
18秒前
科研通AI5应助海藻采纳,获得10
19秒前
Owen应助淡然的大碗采纳,获得10
21秒前
胡图图发布了新的文献求助10
21秒前
不想吃大蒜完成签到 ,获得积分10
23秒前
吃的饭广泛完成签到 ,获得积分10
23秒前
搜集达人应助竺兰舞采纳,获得10
23秒前
25秒前
25秒前
英姑应助狐狐是垫的采纳,获得10
25秒前
涨芝士完成签到 ,获得积分10
25秒前
土豆晴发布了新的文献求助10
27秒前
Rsquo完成签到,获得积分10
28秒前
29秒前
starlight发布了新的文献求助10
29秒前
小飞飞发布了新的文献求助10
29秒前
29秒前
31秒前
31秒前
31秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845211
求助须知:如何正确求助?哪些是违规求助? 3387334
关于积分的说明 10549091
捐赠科研通 3108104
什么是DOI,文献DOI怎么找? 1712376
邀请新用户注册赠送积分活动 824385
科研通“疑难数据库(出版商)”最低求助积分说明 774751