Breast cancer classification: linking molecular mechanisms to disease prognosis

乳腺癌 亚型 疾病 计算生物学 癌症 生物标志物发现 基因表达谱 分子诊断学 生物信息学 分类方案 医学 生物标志物 肿瘤科 生物 内科学 基因 计算机科学 机器学习 基因表达 蛋白质组学 遗传学 程序设计语言
作者
Atefeh Taherian Fard,Sriganesh Srihari,Mark A. Ragan
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:16 (3): 461-474 被引量:68
标识
DOI:10.1093/bib/bbu020
摘要

Accurate subtyping or classification of breast cancer is important for ensuring proper treatment of patients and also for understanding the molecular mechanisms driving this disease. While there have been several gene signatures proposed in the literature to classify breast tumours, these signatures show very low overlaps, different classification performance, and not much relevance to the underlying biology of these tumours. Here we evaluate DNA-damage response (DDR) and cell cycle pathways, which are critical pathways implicated in a considerable proportion of breast tumours, for their usefulness and ability in breast tumour subtyping. We think that subtyping breast tumours based on these two pathways could lead to vital insights into molecular mechanisms driving these tumours. Here, we performed a systematic evaluation of DDR and cell-cycle pathways for subtyping of breast tumours into the five known intrinsic subtypes. Homologous Recombination (HR) pathway showed the best performance in subtyping breast tumours, indicating that HR genes are strongly involved in all breast tumours. Comparisons of pathway based signatures and two standard gene signatures supported the use of known pathways for breast tumour subtyping. Further, the evaluation of these standard gene signatures showed that breast tumour subtyping, prognosis and survival estimation are all closely related. Finally, we constructed an all-inclusive super-signature by combining (union of) all genes and performing a stringent feature selection, and found it to be reasonably accurate and robust in classification as well as prognostic value. Adopting DDR and cell cycle pathways for breast tumour subtyping achieved robust and accurate breast tumour subtyping, and constructing a super-signature which contains feature selected mix of genes from these molecular pathways as well as clinical aspects is valuable in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温婉的荷花完成签到,获得积分10
1秒前
西西完成签到 ,获得积分10
1秒前
淡然珍完成签到,获得积分10
1秒前
2秒前
ljw完成签到,获得积分10
2秒前
Donby发布了新的文献求助30
2秒前
3秒前
3秒前
悦耳的海燕完成签到 ,获得积分10
3秒前
科研通AI6应助baixue采纳,获得10
3秒前
亦亦完成签到 ,获得积分10
4秒前
纪秋完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
绿鹅发布了新的文献求助10
5秒前
5秒前
vivi发布了新的文献求助10
6秒前
darkarc完成签到,获得积分10
6秒前
chenting完成签到 ,获得积分10
6秒前
遁一发布了新的文献求助10
7秒前
不奢完成签到,获得积分10
7秒前
7秒前
辉11完成签到,获得积分10
9秒前
重生之学术裁缝逐梦学术圈完成签到,获得积分10
9秒前
berg发布了新的文献求助10
10秒前
情怀应助yunsww采纳,获得10
10秒前
不奢发布了新的文献求助10
10秒前
10秒前
ZKai发布了新的文献求助10
11秒前
11秒前
11秒前
纪间发布了新的文献求助10
11秒前
李健应助科研通管家采纳,获得10
12秒前
汉堡包应助科研通管家采纳,获得10
12秒前
12秒前
所所应助科研通管家采纳,获得10
12秒前
科研通AI5应助瘦瘦的沛岚采纳,获得10
12秒前
潇潇雨歇应助科研通管家采纳,获得10
12秒前
充电宝应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4746915
求助须知:如何正确求助?哪些是违规求助? 4094306
关于积分的说明 12666942
捐赠科研通 3806283
什么是DOI,文献DOI怎么找? 2101350
邀请新用户注册赠送积分活动 1126663
关于科研通互助平台的介绍 1003266