Empirical modelling as an experimental approach to optimize lactone production

蓖麻油酸 析因实验 响应面法 化学 生产(经济) 芳香 生物转化 催化作用 有机化学 生化工程 内酯 芳香化合物 数学 食品科学 色谱法 经济 微观经济学 工程类 统计 蓖麻油
作者
Nelma Gomes,J. A. Teixeira,Isabel Belo
出处
期刊:Catalysis Science & Technology [Royal Society of Chemistry]
卷期号:1 (1): 86-86 被引量:15
标识
DOI:10.1039/c0cy00017e
摘要

The biotransformation of ricinoleic acid, carried out by Yarrowia lipolytica, leads to the formation of γ-decalactone, a well-known peach-like aroma compound, interesting to produce and to use in the flavouring industry, reason why it is imperative to define the most appropriate conditions for its production. Thus, the aim of this work is the optimization of operating conditions for this lactone. However, as the accumulation of another compound, namely 3-hydroxy-γ-decalactone (the precursor of two other aromatic compounds, dec-2-enolide and dec-3-enolide), may also occur simultaneously in the biotransformation medium, and since this compound may as well be of interest for the flavouring industry, the operating conditions for its production were also a focus of attention. Therefore, a 32 level full-factorial design was used to determine the effect of pH and dissolved oxygen concentration (DO) on the production of γ-decalactone and 3-hydroxy-γ-decalactone. Since both factors were found to influence the two lactones production, a response surface methodology (RSM) analysis was also applied to identify the optimal conditions for the production of those two compounds. The statistical model pointed out pH = 6.17 and DO = 44.4% as the best conditions optimizing γ-decalactone production. Using these optimal conditions, the maximal γ-decalactone concentration achieved was 680.9 mg L−1, which was quite similar to the predicted value of 718.7 mg γ-decalactone L−1. Among the range of operating conditions tested, no optimization was possible for 3-hydroxy-γ-decalactone production, since all possible solutions corresponded to operating conditions not analyzed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
云氲完成签到 ,获得积分10
刚刚
echo发布了新的文献求助10
刚刚
NexusExplorer应助gy采纳,获得10
1秒前
庾幻儿完成签到 ,获得积分10
2秒前
2秒前
du完成签到 ,获得积分10
2秒前
科研小虫发布了新的文献求助10
3秒前
妍小猪发布了新的文献求助10
3秒前
123完成签到 ,获得积分10
4秒前
5秒前
Haucicy完成签到 ,获得积分10
5秒前
淡定的河马完成签到,获得积分10
5秒前
健忘雁易关注了科研通微信公众号
5秒前
雨荷完成签到,获得积分10
5秒前
ASHhan111完成签到,获得积分10
5秒前
温柔一刀发布了新的文献求助10
6秒前
wangzenglin完成签到,获得积分10
6秒前
华仔应助Umar采纳,获得10
6秒前
AAAAA应助sx采纳,获得20
7秒前
spy发布了新的文献求助10
7秒前
啊啊完成签到,获得积分10
7秒前
笑点低凡桃完成签到,获得积分10
7秒前
wu发布了新的文献求助30
9秒前
10秒前
丰知然应助专注鸡采纳,获得10
10秒前
阿碧完成签到 ,获得积分20
10秒前
David完成签到 ,获得积分0
11秒前
慕青应助高高小兔子采纳,获得10
11秒前
12秒前
12秒前
别抢我的虾滑完成签到,获得积分10
12秒前
酷波er应助大神水瓶座采纳,获得10
13秒前
13秒前
Makta完成签到,获得积分10
14秒前
15秒前
cherish完成签到,获得积分10
15秒前
lalal发布了新的文献求助10
15秒前
共享精神应助Madge采纳,获得20
15秒前
16秒前
嗨害完成签到,获得积分10
16秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Commercial Pig Farming 200
Evaluation of sustainable development level for front-end cold-chain logistics of fruits and vegetables: a case study on Xinjiang, China 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827980
求助须知:如何正确求助?哪些是违规求助? 3370256
关于积分的说明 10462337
捐赠科研通 3090205
什么是DOI,文献DOI怎么找? 1700266
邀请新用户注册赠送积分活动 817776
科研通“疑难数据库(出版商)”最低求助积分说明 770441