Prediction of moment‐by‐moment heart rate and skin conductance changes in the context of varying emotional arousal

背景(考古学) 唤醒 心理学 皮肤电导 力矩(物理) 心率 脑电图 终结性评价 认知心理学 神经科学 血压 形成性评价 医学 内科学 古生物学 生物医学工程 物理 生物 经典力学 教育学
作者
Harisu Abdullahi Shehu,Matt Oxner,Will N. Browne,Hedwig Eisenbarth
出处
期刊:Psychophysiology [Wiley]
卷期号:60 (9) 被引量:7
标识
DOI:10.1111/psyp.14303
摘要

Abstract Autonomic nervous system (ANS) responses such as heart rate (HR) and galvanic skin responses (GSR) have been linked with cerebral activity in the context of emotion. Although much work has focused on the summative effect of emotions on ANS responses, their interaction in a continuously changing context is less clear. Here, we used a multimodal data set of human affective states, which includes electroencephalogram (EEG) and peripheral physiological signals of participants' moment‐by‐moment reactions to emotional provoking video clips and modeled HR and GSR changes using machine learning techniques, specifically, long short‐term memory (LSTM), decision tree (DT), and linear regression (LR). We found that LSTM achieved a significantly lower error rate compared with DT and LR due to its inherent ability to handle sequential data. Importantly, the prediction error was significantly reduced for DT and LR when used together with particle swarm optimization to select relevant/important features for these algorithms. Unlike summative analysis, and contrary to expectations, we found a significantly lower error rate when the prediction was made across different participants than within a participant. Moreover, the predictive selected features suggest that the patterns predictive of HR and GSR were substantially different across electrode sites and frequency bands. Overall, these results indicate that specific patterns of cerebral activity track autonomic body responses. Although individual cerebral differences are important, they might not be the only factors influencing the moment‐by‐moment changes in ANS responses.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
大个应助科研通管家采纳,获得10
1秒前
何时到达应助科研通管家采纳,获得30
1秒前
丘比特应助科研通管家采纳,获得30
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
Gstar完成签到 ,获得积分10
3秒前
lmn发布了新的文献求助10
4秒前
5秒前
格拉希尔完成签到,获得积分10
5秒前
5秒前
于是完成签到,获得积分20
5秒前
感谢大哥的帮助完成签到 ,获得积分10
5秒前
6秒前
华仔应助封芷采纳,获得10
7秒前
Hello应助amkeymay采纳,获得10
8秒前
yy完成签到 ,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
水柚子发布了新的文献求助10
9秒前
搜集达人应助自由天荷采纳,获得10
10秒前
舒适的流沙完成签到,获得积分20
10秒前
量子星尘发布了新的文献求助10
11秒前
Da You完成签到 ,获得积分10
13秒前
科研混子完成签到,获得积分10
14秒前
14秒前
wanci应助aa采纳,获得10
14秒前
肖旻发布了新的文献求助10
15秒前
XiaoYuuu发布了新的文献求助10
15秒前
15秒前
羽毛球发布了新的文献求助10
18秒前
19秒前
19秒前
20秒前
21秒前
赵巍发布了新的文献求助10
22秒前
汉堡包应助lulu采纳,获得10
22秒前
桐桐应助满意的不二采纳,获得10
23秒前
水柚子完成签到,获得积分20
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Electron Energy Loss Spectroscopy 1500
Processing of reusable surgical textiles for use in health care facilities 500
Population genetics 2nd edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5806505
求助须知:如何正确求助?哪些是违规求助? 5857004
关于积分的说明 15519076
捐赠科研通 4931519
什么是DOI,文献DOI怎么找? 2655310
邀请新用户注册赠送积分活动 1601887
关于科研通互助平台的介绍 1556936