Deep Long-Tailed Learning: A Survey

深度学习 人工智能 计算机科学 机器学习 班级(哲学) 领域(数学) 公制(单位) 深层神经网络 数据科学 运营管理 数学 纯数学 经济
作者
Yifan Zhang,Bingyi Kang,Bryan Hooi,Shuicheng Yan,Jiashi Feng
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (9): 10795-10816 被引量:469
标识
DOI:10.1109/tpami.2023.3268118
摘要

Deep long-tailed learning, one of the most challenging problems in visual recognition, aims to train well-performing deep models from a large number of images that follow a long-tailed class distribution. In the last decade, deep learning has emerged as a powerful recognition model for learning high-quality image representations and has led to remarkable breakthroughs in generic visual recognition. However, long-tailed class imbalance, a common problem in practical visual recognition tasks, often limits the practicality of deep network based recognition models in real-world applications, since they can be easily biased towards dominant classes and perform poorly on tail classes. To address this problem, a large number of studies have been conducted in recent years, making promising progress in the field of deep long-tailed learning. Considering the rapid evolution of this field, this article aims to provide a comprehensive survey on recent advances in deep long-tailed learning. To be specific, we group existing deep long-tailed learning studies into three main categories (i.e., class re-balancing, information augmentation and module improvement), and review these methods following this taxonomy in detail. Afterward, we empirically analyze several state-of-the-art methods by evaluating to what extent they address the issue of class imbalance via a newly proposed evaluation metric, i.e., relative accuracy. We conclude the survey by highlighting important applications of deep long-tailed learning and identifying several promising directions for future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
心若在梦就在完成签到,获得积分10
刚刚
李健应助帅气的花瓣采纳,获得10
1秒前
牛土应助jz采纳,获得10
2秒前
wanglu完成签到,获得积分10
2秒前
三七发布了新的文献求助10
2秒前
2秒前
年轻花卷完成签到 ,获得积分10
3秒前
所所应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
秦小荷发布了新的文献求助10
3秒前
Sea_U应助科研通管家采纳,获得10
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
只争朝夕应助科研通管家采纳,获得10
4秒前
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
4秒前
Sea_U应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
上官若男应助科研通管家采纳,获得30
5秒前
只争朝夕应助科研通管家采纳,获得10
5秒前
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
5秒前
上官若男应助科研通管家采纳,获得30
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
慕青应助科研通管家采纳,获得10
5秒前
科研通AI6.1应助crazzzzzy采纳,获得10
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
中国脑卒中防治报告 1000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5825172
求助须知:如何正确求助?哪些是违规求助? 6009321
关于积分的说明 15566266
捐赠科研通 4945826
什么是DOI,文献DOI怎么找? 2664476
邀请新用户注册赠送积分活动 1610324
关于科研通互助平台的介绍 1565270