A novel model for ultra-short term wind power prediction based on Vision Transformer

期限(时间) 风力发电 计算机科学 变压器 环境科学 工程类 电气工程 电压 量子力学 物理
作者
Ling Xiang,Xiaomengting Fu,Qingtao Yao,Guopeng Zhu,Aijun Hu
出处
期刊:Energy [Elsevier]
卷期号:294: 130854-130854 被引量:30
标识
DOI:10.1016/j.energy.2024.130854
摘要

Wind power has quickly developed in the world owing to the advantages of pure, inexpensive, and inexhaustible. However, strong volatility, unmanageable, and randomness make it difficult to achieve secure wind power generation. An excellent wind power prediction is effective for power system scheduling and safely stable operation. Vision Transformer (ViT) model is introduced for building a connection of the extracted characteristics and desired output. Long-short term memory (LSTM) is combined with ViT, and a new wind power forecasting model is proposed in this paper. For the proposed LSTM-ViT model, the temporal aspects of the weather data and correspondence properties are extracted based on LSTM. The link of the output and characteristic is established in view of the ViT, and the multi-headed self-attentiveness mechanisms in ViT fully exploit the relationship between the inputs. The validity and sophistication of the LSTM-ViT method are validated by the climate statistics and statistics of wind power. The results indicate that the wind power forecasting model is provided with higher prediction accuracy. The forecast results for the fourth quarter are used as analysis cases. The root mean square error of the method is reduced by 41.77%, 16.60%, 28.72%, 26.81%, and 16.25% compared to gate recurrent unit (GRU), LSTM, ViT, convolutional neural network (CNN)-ViT, and GRU-ViT respectively. The mean absolute error of the LSTM-ViT method in the first quarter is 0.327, with model comparison values reduction of 33.71%, 38.30%, 32.99%, 17.63% and 10.65% respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助科研通管家采纳,获得10
刚刚
酷波er应助科研通管家采纳,获得10
刚刚
刚刚
1秒前
Pann发布了新的文献求助10
1秒前
Criminology34应助许xxxx采纳,获得10
1秒前
青青完成签到,获得积分10
1秒前
马马发布了新的文献求助10
3秒前
王彦清完成签到,获得积分20
5秒前
Yuksn发布了新的文献求助10
5秒前
6秒前
跳跃完成签到,获得积分10
7秒前
啊呜一口甜应助杨飞采纳,获得10
7秒前
Justtry完成签到,获得积分10
8秒前
Yidie完成签到,获得积分10
8秒前
10秒前
领导范儿应助离线请留言采纳,获得10
11秒前
十三完成签到 ,获得积分10
12秒前
大力的忆霜完成签到 ,获得积分10
13秒前
wdd完成签到 ,获得积分10
13秒前
大白菜完成签到,获得积分10
14秒前
王彦清发布了新的文献求助30
14秒前
姬鲁宁完成签到 ,获得积分10
14秒前
淡淡的寄灵完成签到,获得积分10
15秒前
奇美拉发布了新的文献求助10
16秒前
ww完成签到,获得积分10
16秒前
lian完成签到,获得积分10
18秒前
Yuksn完成签到,获得积分10
19秒前
τ涛完成签到,获得积分10
20秒前
zer0完成签到,获得积分10
21秒前
zxcdsw应助ironsilica采纳,获得10
21秒前
默默善愁发布了新的文献求助10
23秒前
蓝天碧海小西服完成签到,获得积分10
23秒前
酷波er应助马马采纳,获得10
23秒前
共享精神应助song采纳,获得10
24秒前
shy完成签到,获得积分10
26秒前
TanXu完成签到 ,获得积分10
26秒前
29秒前
garfieldg3完成签到,获得积分10
30秒前
刘倩倩完成签到 ,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
中国脑卒中防治报告 1000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 520
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5829791
求助须知:如何正确求助?哪些是违规求助? 6049862
关于积分的说明 15577241
捐赠科研通 4949195
什么是DOI,文献DOI怎么找? 2666817
邀请新用户注册赠送积分活动 1612375
关于科研通互助平台的介绍 1567485