A hybrid forecasting model to improve cost prediction accuracy in green building projects with machine learning

机器学习 计算机科学 绿色建筑 人工智能 工程类 建筑工程
作者
Zhijiang Wu,Mengyao Liu,Guofeng Ma,Shan Jiang
出处
期刊:Engineering, Construction and Architectural Management [Emerald Publishing Limited]
标识
DOI:10.1108/ecam-09-2024-1247
摘要

Purpose The objective of this study is to accurately predict the cost of green buildings to provide quantifiable criteria for investment decisions from investors. Design/methodology/approach This study proposes a hybrid prediction model ML-based for cost prediction of GBPs and obtains prediction parameters (PPs) associated with project characteristics through data mining (DM) techniques. The model integrates a principal component analysis (PCA) method to perform parameter dimensionality reduction (PDR) on a large number of raw variables to provide independent characteristic terms. Moreover, the support vector machine (SVM) algorithm is improved to optimize the prediction results and integrated with parameter dimensionality reduction and cost prediction. Findings The prediction results show that the mean absolute and relative errors of the hybrid prediction model proposed in this study are equal to 39.78 and 0.02, respectively, which are much lower than those of the traditional SVM model and MRA prediction model. Moreover, the hybrid prediction model with parameter dimensionality reduction also achieved better prediction accuracy ( R 2 = 0.319) and superior prediction accuracy for different cost terms. Originality/value Theoretically, the hybrid prediction model developed in this study can reliably predict the cost while accurately capturing the characteristics of GBPs, which is a bold attempt at a comprehensive approach. Practically, this study provides developers with a new ML-based prediction model that is capable of capturing the costs of projects with ambiguous definitions and complex characteristics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
QINXD完成签到,获得积分10
1秒前
可爱的函函应助moonlight采纳,获得10
1秒前
6秒前
无限西装完成签到,获得积分10
6秒前
心灵美诗霜完成签到 ,获得积分10
8秒前
Doreen发布了新的文献求助10
9秒前
Akim应助落寞明雪采纳,获得10
10秒前
冲冲冲完成签到 ,获得积分10
12秒前
13秒前
13秒前
茜你亦首歌完成签到,获得积分10
13秒前
yang应助Samuel采纳,获得10
14秒前
李爱国应助科研通管家采纳,获得30
17秒前
NexusExplorer应助科研通管家采纳,获得10
17秒前
英俊的铭应助科研通管家采纳,获得10
17秒前
旧辞应助科研通管家采纳,获得10
17秒前
17秒前
CAOHOU应助科研通管家采纳,获得10
17秒前
Singularity应助科研通管家采纳,获得10
17秒前
CAOHOU应助科研通管家采纳,获得10
17秒前
CAOHOU应助科研通管家采纳,获得10
17秒前
Owen应助科研通管家采纳,获得10
17秒前
18秒前
充电宝应助lan采纳,获得10
18秒前
19秒前
上官若男应助吱吱吱采纳,获得10
20秒前
21秒前
XUUGO发布了新的文献求助10
21秒前
21秒前
完美的妙芹发布了新的文献求助200
22秒前
23秒前
出门右转发布了新的文献求助10
24秒前
jenningseastera应助uma采纳,获得10
24秒前
Miao完成签到,获得积分10
24秒前
852应助NNN采纳,获得10
25秒前
26秒前
26秒前
27秒前
wanci应助老将采纳,获得10
27秒前
huoshan发布了新的文献求助10
27秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842011
求助须知:如何正确求助?哪些是违规求助? 3384120
关于积分的说明 10532608
捐赠科研通 3104441
什么是DOI,文献DOI怎么找? 1709629
邀请新用户注册赠送积分活动 823315
科研通“疑难数据库(出版商)”最低求助积分说明 773916