Complexity Quantification of Driving Scenarios with Dynamic Evolution Characteristics

计算机科学 熵(时间箭头) 度量(数据仓库) 计算复杂性理论 数据挖掘 算法 量子力学 物理
作者
T. Liu,Cong Wang,Ziqiao Yin,Zhilong Mi,Xiang Xiong,Binghui Guo
出处
期刊:Entropy [MDPI AG]
卷期号:26 (12): 1033-1033 被引量:4
标识
DOI:10.3390/e26121033
摘要

Complexity is a key measure of driving scenario significance for scenario-based autonomous driving tests. However, current methods for quantifying scenario complexity primarily focus on static scenes rather than dynamic scenarios and fail to represent the dynamic evolution of scenarios. Autonomous vehicle performance may vary significantly across scenarios with different dynamic changes. This paper proposes the Dynamic Scenario Complexity Quantification (DSCQ) method for autonomous driving, which integrates the effects of the environment, road conditions, and dynamic entities in traffic on complexity. Additionally, it introduces Dynamic Effect Entropy to measure uncertainty arising from scenario evolution. Using the real-world DENSE dataset, we demonstrate that the proposed method more accurately quantifies real scenario complexity with dynamic evolution. Although certain scenes may appear less complex, their significant dynamic changes over time are captured by our proposed method but overlooked by conventional approaches. The correlation between scenario complexity and object detection algorithm performance further proves the effectiveness of the method. DSCQ quantifies driving scenario complexity across both spatial and temporal scales, filling the gap of existing methods that only consider spatial complexity. This approach shows the potential to enhance AV safety testing efficiency in varied and evolving scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
endlessloop发布了新的文献求助10
1秒前
1秒前
Kahar发布了新的文献求助10
2秒前
2秒前
2秒前
EMC应助zhechen采纳,获得10
3秒前
4秒前
Ezio_sunhao完成签到,获得积分10
4秒前
7秒前
艳子发布了新的文献求助10
9秒前
9秒前
10秒前
土豪的紫荷完成签到 ,获得积分10
11秒前
ysxl发布了新的文献求助10
11秒前
因生如沫完成签到,获得积分10
12秒前
无极微光应助小吴采纳,获得20
12秒前
13秒前
14秒前
合适板栗发布了新的文献求助10
15秒前
科研通AI6.1应助香菜包采纳,获得30
15秒前
上官小怡完成签到,获得积分10
16秒前
yoona发布了新的文献求助10
16秒前
18秒前
冷艳的寻冬完成签到 ,获得积分10
18秒前
乐乐应助莫小烦采纳,获得10
18秒前
上官小怡发布了新的文献求助10
20秒前
jwxstc发布了新的文献求助10
21秒前
大马哈鱼发布了新的文献求助150
22秒前
枝易发布了新的文献求助200
22秒前
科研通AI6.1应助踏实冷雪采纳,获得20
26秒前
28秒前
NattyPoe应助因生如沫采纳,获得30
29秒前
情怀应助艳子采纳,获得10
29秒前
30秒前
Criminology34应助荔枝采纳,获得10
33秒前
33秒前
脑洞疼应助丹妮采纳,获得30
34秒前
Cat4pig完成签到 ,获得积分10
37秒前
小杜完成签到,获得积分10
37秒前
jwxstc发布了新的文献求助10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
How to Develop Robust Scale-up Strategies for Complex Injectable Dosage Forms 450
Berlitz Picture Dictionary Arabic 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5864511
求助须知:如何正确求助?哪些是违规求助? 6402187
关于积分的说明 15651332
捐赠科研通 4978849
什么是DOI,文献DOI怎么找? 2685565
邀请新用户注册赠送积分活动 1628612
关于科研通互助平台的介绍 1586351