镁
纳米颗粒
伤口愈合
药理学
纳米技术
化学
传统医学
医学
材料科学
外科
有机化学
作者
Mozafar Khazaei,Mohammadali Meskaraf-asadabadi,Fatemeh Khazaei,Sepide Kadivarian,Elham Ghanbari
标识
DOI:10.1080/1061186x.2024.2445744
摘要
Treating burn lesions has always been challenging because any product should be cheap, accessible, and have anti-bacterial commodities and tissue regeneration properties. The green synthesis of magnesium oxide nanoparticles (GS-MgONPs) can create an optimal prospect that is safe with low toxicity in biological tissue and better safety for application while including the antibacterial effect. This recent study aimed to evaluate the effectiveness of burn wound treatment using GS-MgONPs in rats. GS-MgONPs were synthesised for the first time using a Falcaria vulgaris extract (FVE) and characterised. Thirty male Wistar rats were divided into five groups: An untreated group, conventional product treated group, GS-MgONPs (1 wt%), GS-MgONPs (3 wt%) and 5. FVE (1 wt%). Treatments commenced immediately following burn induction and were administered daily for a duration of 21 d. GS-MgONPs showed a spherical morphology with a diameter of less than 100 nm. The NPs (1% and 3 wt%) and FVE demonstrated significant growth inhibition against Staphylococcus aureus while showing no cytotoxic effects on human fibroblast cells. The proposed subjects treated with 1 wt% and 3 wt% GS-MgONPs were able to significantly increase the rate of wound closure (p < 0.05). Histological observations revealed that collagen formation and epithelial regeneration were more pronounced in the groups receiving 1 wt% and 3 wt% MgONPs. These results indicate that GS-MgONPs effectively enhance the regeneration process.
科研通智能强力驱动
Strongly Powered by AbleSci AI