已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Using machine learning to predict the probability of incident 2-year depression in older adults with chronic diseases: a retrospective cohort study

接收机工作特性 逻辑回归 萧条(经济学) 随机森林 阿达布思 医学 队列 人口 重性抑郁障碍 统计 人工智能 机器学习 支持向量机 计算机科学 精神科 内科学 数学 经济 宏观经济学 认知 环境卫生
作者
Ying Zheng,Taotao Zhang,Shu Yang,Fuzhi Wang,Li Zhang,Yuwen Liu
出处
期刊:BMC Psychiatry [BioMed Central]
卷期号:24 (1)
标识
DOI:10.1186/s12888-024-06299-6
摘要

Older adults with chronic diseases are at higher risk of depressive symptoms than those without. For the onset of depressive symptoms, the prediction ability of changes in common risk factors over a 2-year follow-up period is unclear in the Chinese older population. This study aimed to build risk prediction models (RPMs) to estimate the probability of incident 2-year depression using data from the China Health and Retirement Longitudinal Study (CHARLS). Four ML algorithms (logistic regression [LR], AdaBoost, random forest [RF] and k-nearest neighbor [kNN]) were applied to develop RPMs using the 2011–2015 cohort data. These developed models were then validated with 2018–2020 survey data. We evaluated the model performance using discrimination and calibration metrics, including an area under the receiver operating characteristic curve (AUROC) and the precision-recall curve (AUPRC), accuracy, sensitivity and calibrations plot. Finally, we explored the key factors of depressive symptoms by the selected best predictive models. This study finally included 7,121 participants to build models to predict depressive symptoms, finding a 21.5% prevalence of depression. Combining the Synthetic Minority Oversampling Technique (SMOTE) with the logistic regression model (LR-SM) exhibited superior precision to predict depression than other models, with an AUROC and AUPRC of 0.612 and 0.468, respectively, an accuracy of 0.619 and a sensitivity of 0.546. In additiona, external validation of the LR-SM model using data from the 2018–2020 data also demonstrated good predictive ability with an AUROC of 0.623 (95% CI: 0.555– 0.673). Sex, self-rated health status, occupation, eyesight, memory and life satisfaction were identified as impactful predictors of depression. Our developed models exhibited high accuracy, good discrimination and calibration profiles in predicting two-year risk of depression among older adults with chronic diseases. This model can be used to identify Chinese older population at high risk of depression and intervene in a timely manner.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
喵喵完成签到 ,获得积分10
2秒前
小马甲应助AAA采纳,获得10
2秒前
十九局完成签到,获得积分10
3秒前
化工渣渣完成签到,获得积分10
3秒前
4秒前
專注完美近乎苛求完成签到 ,获得积分10
4秒前
clone2012完成签到,获得积分10
4秒前
姜sir完成签到 ,获得积分10
4秒前
陆碌路完成签到,获得积分10
5秒前
熄熄发布了新的文献求助10
5秒前
二七完成签到 ,获得积分10
7秒前
baimengmeng完成签到,获得积分10
7秒前
树123应助照照采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
9秒前
李一一发布了新的文献求助30
9秒前
Owen应助科研通管家采纳,获得30
9秒前
卡奇Mikey完成签到,获得积分10
9秒前
两袖清风完成签到 ,获得积分10
12秒前
13秒前
润润润完成签到,获得积分10
15秒前
追逐123完成签到 ,获得积分10
16秒前
大胆薯片发布了新的文献求助30
16秒前
哈哈完成签到 ,获得积分10
16秒前
搞怪不言完成签到,获得积分10
16秒前
两个我完成签到 ,获得积分10
16秒前
身法马可波罗完成签到 ,获得积分10
16秒前
凶狠的猎豹完成签到,获得积分10
17秒前
gszy1975完成签到,获得积分10
18秒前
祁连山的熊猫完成签到 ,获得积分0
18秒前
运运完成签到 ,获得积分10
18秒前
聪明静柏完成签到 ,获得积分10
19秒前
jxp完成签到,获得积分10
20秒前
Leviathan完成签到 ,获得积分10
20秒前
残幻应助zkf采纳,获得10
21秒前
短巷完成签到 ,获得积分10
21秒前
liu完成签到 ,获得积分10
21秒前
听春风完成签到 ,获得积分10
21秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815607
求助须知:如何正确求助?哪些是违规求助? 3359221
关于积分的说明 10400786
捐赠科研通 3076889
什么是DOI,文献DOI怎么找? 1690041
邀请新用户注册赠送积分活动 813613
科研通“疑难数据库(出版商)”最低求助积分说明 767674