法拉第效率
阳极
材料科学
硅
电解质
锂(药物)
化学工程
纳米技术
电化学
导电体
锂离子电池
电池(电)
复合材料
电极
化学
光电子学
医学
功率(物理)
物理
工程类
物理化学
量子力学
内分泌学
作者
Yuanyuan Yu,Chen Yang,Jiadeng Zhu,Baolong Xue,Junhua Zhang,Mengjin Jiang
出处
期刊:Angewandte Chemie
[Wiley]
日期:2024-11-30
卷期号:64 (6): e202418794-e202418794
被引量:40
标识
DOI:10.1002/anie.202418794
摘要
Abstract Silicon (Si) anodes hold great promise for high‐capacity lithium‐ion batteries (LIBs), yet their practical application is hindered by severe volume expansion and mechanical degradation. To tackle these challenges, we present an innovative 3D crosslinked conductive polyoxadiazole (POD) binder engineered with glycerol (GL) to form a robust network of covalent and hydrogen bonds. This unique chemical architecture not only enhances adhesion and mechanical resilience to effectively dissipate the stresses induced by Si's volumetric changes but also constructs a robust conductive framework to facilitate electron transfer. The dynamic interplay between strong covalent and flexible hydrogen bonds in the POD‐c‐GL binder enables superior structural integrity and stable solid‐electrolyte interphase (SEI) during cycling. The Si@POD‐c‐GL anode exhibits remarkable electrochemical performance, including a high initial Coulombic efficiency, impressive rate capability, and outstanding cycling stability. This work highlights the potential of harnessing in situ crosslinking chemistry to develop advanced binders, paving the way for the next generation of high‐performance Si anodes in LIBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI