亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Reward model development for referral reward program in delivery services based on customer preferences

介绍 业务 营销 过程管理 计算机科学 医学 护理部
作者
Verayanti Corellina Simanullang,Hasrini Sari
出处
期刊:Asia Pacific Journal of Marketing and Logistics [Emerald (MCB UP)]
卷期号:37 (11): 3499-3516
标识
DOI:10.1108/apjml-09-2024-1243
摘要

Purpose This study aims to develop a referral reward configuration based on customer preferences in the context of logistics company delivery services. The study was conducted in two stages. The first stage involved ascertaining the configuration of reward attributes that matches customer preferences: reward type (utilitarian vs hedonic), reward size (smaller vs larger), reward scheme (reward-you vs reward-both) and reward visibility (public vs private). The second stage tested the best and next-best reward configurations in enhancing perceived attractiveness (PA), meta-perception and recommendation likelihood. Design/methodology/approach A survey was conducted with 294 customers of Indonesia’s largest state-owned logistics company, with conjoint analysis used to identify the preferred reward configuration. The second stage involved testing two reward configuration scenarios in two different groups, each comprising 119 respondents. Findings The reward configuration identified in the first stage included a utilitarian reward, a larger reward, a reward-both and a public reward. The second stage showed that this reward configuration significantly influences the likelihood of recommending. The mediating effect of PA and metaperception was found for the best plan, although the mediating relationship was not significant for the next-best plan. These differences highlight how variations in reward configuration shape customer responses in referral programs. Originality/value This study investigates customer preferences for reward attribute configurations as a whole rather than individually and examines the mechanisms through which the reward configuration affects customers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111完成签到 ,获得积分10
12秒前
2025alex完成签到,获得积分10
20秒前
27秒前
ggg完成签到 ,获得积分10
28秒前
科研通AI6应助科研通管家采纳,获得10
29秒前
彭于晏应助科研通管家采纳,获得10
29秒前
科研通AI6应助科研通管家采纳,获得10
29秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
彭于晏应助科研通管家采纳,获得10
30秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
30秒前
帝国之花应助科研通管家采纳,获得10
30秒前
30秒前
ZWS发布了新的文献求助10
35秒前
41秒前
耳东发布了新的文献求助10
48秒前
1分钟前
胖虎发布了新的文献求助10
1分钟前
桐桐应助胖虎采纳,获得10
1分钟前
hb完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
kitty发布了新的文献求助30
1分钟前
耳东关注了科研通微信公众号
1分钟前
酷酷静白完成签到 ,获得积分10
1分钟前
GingerF应助年糕炸小羊采纳,获得50
1分钟前
1分钟前
Nana发布了新的文献求助10
1分钟前
1分钟前
Yikepp发布了新的文献求助10
1分钟前
我是老大应助李冰洁采纳,获得10
1分钟前
1分钟前
orixero应助耳东采纳,获得10
1分钟前
2分钟前
2分钟前
李冰洁发布了新的文献求助10
2分钟前
Hello应助shinn采纳,获得10
2分钟前
Coai517完成签到 ,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
Ming应助科研通管家采纳,获得10
2分钟前
帝国之花应助科研通管家采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772589
求助须知:如何正确求助?哪些是违规求助? 5600075
关于积分的说明 15429824
捐赠科研通 4905535
什么是DOI,文献DOI怎么找? 2639453
邀请新用户注册赠送积分活动 1587373
关于科研通互助平台的介绍 1542285