Digital twin forecasting of microwave ablation via fat quantification image-to-grid computational methods

烧蚀 微波消融 医学 生物医学工程 计算机科学 放射科 内科学
作者
Frankangel Servin,Jarrod A. Collins,Jon S. Heiselman,Katherine Frederick-Dyer,Virginia B. Planz,Sunil K. Geevarghese,Daniel B. Brown,Michael I. Miga
标识
DOI:10.1117/12.2655257
摘要

Computational tools, such as "digital twin" modeling, are beginning to enable patient-specific surgical planning of ablative therapies to treat hepatocellular carcinoma. Digital twins models use patient functional data and biomarker imaging to build anatomically accurate models to forecast therapeutic outcomes through simulation, i.e., providing accurate information for guiding clinical decision-making. In microwave ablation (MWA), tissue-specific factors (e.g., tissue perfusion, material properties, disease state, etc.) can affect ablative therapies, but current thermal dosing guidelines do not account for these differences. This study establishes an imaging-data-driven framework to construct digital twin biophysical models to predict ablation extents in livers with varying fat content in MWA. Patient anatomic scans were segmented to develop customized three-dimensional computational biophysical models, and fat-quantification images were acquired to reconstruct spatially accurate biophysical material properties. Simulated patient-specific microwave ablations of homogenous digital-twin models (control) and enhanced digital twin models were performed at four levels of fatty liver disease. When looking at the short diameter (SD), long diameter (LD), ablation volume, and spherical index of the ablation margins - the heterogenous digital-twin models did not produce significantly different ablation margins compared to the control models. Both models produced results that report ablation margins for patients with high-fat livers are larger than low-fat livers (LD of 6.17cm vs. 6.30cm and SD of 2.10 vs. 1.99, respectively). Overall, the results suggest that modeling heterogeneous clinical fatty liver disease using fat-quantitative imaging data has the potential to improve patient specificity for this treatment modality.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烂漫凝竹完成签到,获得积分20
刚刚
2秒前
4秒前
归尘发布了新的文献求助10
5秒前
6秒前
huhaofeng发布了新的文献求助10
7秒前
李健的小迷弟应助Nike采纳,获得10
8秒前
搜集达人应助Yolo采纳,获得10
8秒前
韦老虎发布了新的文献求助200
8秒前
科研通AI6.1应助wyx2091采纳,获得10
9秒前
9秒前
10秒前
11秒前
希望天下0贩的0应助YYC采纳,获得10
14秒前
合适的梦寒完成签到,获得积分10
16秒前
阿乾完成签到,获得积分10
16秒前
小太阳发布了新的文献求助10
16秒前
19秒前
22秒前
22秒前
23秒前
24秒前
希望天下0贩的0应助Nike采纳,获得10
26秒前
Sivona发布了新的文献求助10
27秒前
YYC发布了新的文献求助10
27秒前
wyx2091发布了新的文献求助10
28秒前
小黄人应助清爽的喇叭花采纳,获得10
29秒前
35秒前
小二郎应助liuhaorana111_采纳,获得10
35秒前
沙漠大雕完成签到,获得积分10
35秒前
Ava应助wowwyw采纳,获得10
39秒前
40秒前
42秒前
小休完成签到 ,获得积分10
43秒前
舒心的雍发布了新的文献求助10
44秒前
44秒前
MZ完成签到,获得积分0
46秒前
46秒前
47秒前
爱笑以松完成签到,获得积分10
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Psychology and Work Today 1000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5832726
求助须知:如何正确求助?哪些是违规求助? 6074293
关于积分的说明 15586084
捐赠科研通 4951880
什么是DOI,文献DOI怎么找? 2668417
邀请新用户注册赠送积分活动 1613816
关于科研通互助平台的介绍 1568726