Spatial autocorrelation and heterogenicity of demographic and healthcare factors in the five waves of COVID-19 epidemic in Thailand

空间分析 二元分析 自相关 入射(几何) 空间分布 2019年冠状病毒病(COVID-19) 人口学 地理 空间相关性 空间生态学 单变量 共同空间格局 统计 地图学 多元统计 医学 生物 数学 生态学 病理 遥感 疾病 几何学 社会学 传染病(医学专业)
作者
Hein Stigum,Wongsa Laohasiriwong,Kittipong Sornlorm
出处
期刊:Geospatial Health [PAGEPress Publications]
卷期号:18 (1) 被引量:5
标识
DOI:10.4081/gh.2023.1183
摘要

A study of 2,569,617 Thailand citizens diagnosed with COVID-19 from January 2020 to March 2022 was conducted with the aim of identifying the spatial distribution pattern of incidence rate of COVID-19 during its five main waves in all 77 provinces of the country. Wave 4 had the highest incidence rate (9,007 cases per 100,000) followed by the Wave 5, with 8,460 cases per 100,000. We also determined the spatial autocorrelation between a set of five demographic and health care factors and the spread of the infection within the provinces using Local Indicators of Spatial Association (LISA) and univariate and bivariate analysis with Moran’s I. The spatial autocorrelation between the variables examined and the incidence rates was particularly strong during the waves 3-5. All findings confirmed the existence of spatial autocorrelation and heterogenicity of COVID-19 with the distribution of cases with respect to one or several of the five factors examined. The study identified significant spatial autocorrelation with regard to the COVID-19 incidence rate with these variables in all five waves. Depending on which province that was investigated, strong spatial autocorrelation of the High-High pattern was observed in 3 to 9 clusters and of the Low-Low pattern in 4 to 17 clusters, whereas negative spatial autocorrelation was observed in 1 to 9 clusters of the High-Low pattern and in 1 to 6 clusters of Low-High pattern. These spatial data should support stakeholders and policymakers in their efforts to prevent, control, monitor and evaluate the multidimensional determinants of the COVID-19 pandemic.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
5秒前
沉默问夏完成签到 ,获得积分10
6秒前
哈哈哈哈哈哈完成签到 ,获得积分10
6秒前
大个应助11采纳,获得10
12秒前
Hiker发布了新的文献求助10
13秒前
14秒前
SciGPT应助Hiker采纳,获得10
21秒前
紫熊发布了新的文献求助10
26秒前
nook完成签到,获得积分10
28秒前
36秒前
38秒前
沈清酌完成签到,获得积分10
39秒前
咯咚完成签到 ,获得积分10
40秒前
科研通AI6.2应助dl采纳,获得30
41秒前
沈清酌发布了新的文献求助10
41秒前
liuliu发布了新的文献求助10
49秒前
50秒前
50秒前
冷艳的寻冬完成签到 ,获得积分10
51秒前
机智靖柔发布了新的文献求助10
53秒前
56秒前
自然的行恶完成签到 ,获得积分10
56秒前
Fortune完成签到,获得积分10
59秒前
iyuccvbe完成签到,获得积分10
59秒前
朴实初夏完成签到 ,获得积分10
59秒前
1分钟前
howl发布了新的文献求助10
1分钟前
Hello应助liuliu采纳,获得10
1分钟前
所所应助ylz采纳,获得50
1分钟前
Running完成签到 ,获得积分10
1分钟前
111完成签到 ,获得积分10
1分钟前
嚯嚯嚯嚯完成签到 ,获得积分10
1分钟前
liuliu发布了新的文献求助10
1分钟前
yi完成签到 ,获得积分10
1分钟前
fmrre完成签到,获得积分10
1分钟前
fossick2010完成签到 ,获得积分10
1分钟前
爆米花应助周梦蝶采纳,获得10
1分钟前
李健的小迷弟应助郑女士采纳,获得10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Using a Non-Equivalent Control Group Design in Educational Research 200
Public Health, Personal Health and Pills: Drug Entanglements and Pharmaceuticalised Governance 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5868022
求助须知:如何正确求助?哪些是违规求助? 6437147
关于积分的说明 15657551
捐赠科研通 4983349
什么是DOI,文献DOI怎么找? 2687459
邀请新用户注册赠送积分活动 1630126
关于科研通互助平台的介绍 1588186