Performance of an Open-Source Large Language Model in Extracting Information from Free-Text Radiology Reports

医学 头痛 背景(考古学) 计算机科学 急诊科 短信 放射科 分类 核医学 万维网 外科 人工智能 古生物学 精神科 生物
作者
Bastien Le Guellec,Alexandre Lefèvre,Charlotte Geay,Lucas Shorten,Cyril Bruge,Lotfi Hacein‐Bey,Philippe Amouyel,Jean‐Pierre Pruvo,Grégory Kuchcinski,Aghilès Hamroun
出处
期刊:Radiology [Radiological Society of North America]
卷期号:6 (4) 被引量:19
标识
DOI:10.1148/ryai.230364
摘要

Purpose To assess the performance of a local open-source large language model (LLM) in various information extraction tasks from real-life emergency brain MRI reports. Materials and Methods All consecutive emergency brain MRI reports written in 2022 from a French quaternary center were retrospectively reviewed. Two radiologists identified MRI scans that were performed in the emergency department for headaches. Four radiologists scored the reports' conclusions as either normal or abnormal. Abnormalities were labeled as either headache-causing or incidental. Vicuna (LMSYS Org), an open-source LLM, performed the same tasks. Vicuna's performance metrics were evaluated using the radiologists' consensus as the reference standard. Results Among the 2398 reports during the study period, radiologists identified 595 that included headaches in the indication (median age of patients, 35 years [IQR, 26-51 years]; 68% [403 of 595] women). A positive finding was reported in 227 of 595 (38%) cases, 136 of which could explain the headache. The LLM had a sensitivity of 98.0% (95% CI: 96.5, 99.0) and specificity of 99.3% (95% CI: 98.8, 99.7) for detecting the presence of headache in the clinical context, a sensitivity of 99.4% (95% CI: 98.3, 99.9) and specificity of 98.6% (95% CI: 92.2, 100.0) for the use of contrast medium injection, a sensitivity of 96.0% (95% CI: 92.5, 98.2) and specificity of 98.9% (95% CI: 97.2, 99.7) for study categorization as either normal or abnormal, and a sensitivity of 88.2% (95% CI: 81.6, 93.1) and specificity of 73% (95% CI: 62, 81) for causal inference between MRI findings and headache. Conclusion An open-source LLM was able to extract information from free-text radiology reports with excellent accuracy without requiring further training.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
涛zt发布了新的文献求助10
1秒前
好运吗喽完成签到,获得积分10
2秒前
3秒前
淡定的紫青完成签到 ,获得积分10
5秒前
好运吗喽发布了新的文献求助10
9秒前
隐形皮卡丘完成签到 ,获得积分10
10秒前
13秒前
科研通AI6.1应助shanshan采纳,获得10
14秒前
15秒前
Ahha完成签到 ,获得积分10
16秒前
17秒前
科研通AI6.1应助冰雪物语采纳,获得10
18秒前
20秒前
奥一奥发布了新的文献求助30
22秒前
科研通AI6.1应助阿拉采纳,获得10
22秒前
SciGPT应助mengwensi采纳,获得10
24秒前
真难啊完成签到 ,获得积分10
24秒前
深情安青应助无私的颤采纳,获得10
25秒前
HL发布了新的文献求助10
27秒前
万能图书馆应助张张采纳,获得10
29秒前
29秒前
29秒前
30秒前
Marshall完成签到,获得积分10
32秒前
Bai_shao完成签到,获得积分10
33秒前
iluvotter完成签到,获得积分20
33秒前
CipherSage应助奥一奥采纳,获得10
37秒前
37秒前
开放的乐蓉完成签到,获得积分20
37秒前
weinaonao发布了新的文献求助10
37秒前
平淡卿完成签到 ,获得积分10
38秒前
Marshall发布了新的文献求助10
41秒前
43秒前
Dongbalal发布了新的文献求助10
43秒前
明天一定吃早饭完成签到,获得积分10
44秒前
汉堡包应助doudou采纳,获得10
45秒前
46秒前
Akim应助Dongbalal采纳,获得10
48秒前
卷毛发布了新的文献求助10
50秒前
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Psychology and Work Today 1000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5832447
求助须知:如何正确求助?哪些是违规求助? 6072132
关于积分的说明 15585340
捐赠科研通 4951551
什么是DOI,文献DOI怎么找? 2668178
邀请新用户注册赠送积分活动 1613655
关于科研通互助平台的介绍 1568606