Dynamic Pricing with Demand Learning and Reference Effects

动态定价 需求曲线 经济 微观经济学 收入 可微函数 功能(生物学) 收益管理 渐近最优算法 市场需求表 预订价格 计量经济学 数学优化 数学 数学分析 会计 生物 进化生物学
作者
Arnoud V. den Boer,N. Bora Keskin
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:68 (10): 7112-7130 被引量:71
标识
DOI:10.1287/mnsc.2021.4234
摘要

We consider a seller’s dynamic pricing problem with demand learning and reference effects. We first study the case in which customers are loss-averse: they have a reference price that can vary over time, and the demand reduction when the selling price exceeds the reference price dominates the demand increase when the selling price falls behind the reference price by the same amount. Thus, the expected demand as a function of price has a time-varying “kink” and is not differentiable everywhere. The seller neither knows the underlying demand function nor observes the time-varying reference prices. In this setting, we design and analyze a policy that (i) changes the selling price very slowly to control the evolution of the reference price and (ii) gradually accumulates sales data to balance the trade-off between learning and earning. We prove that, under a variety of reference-price updating mechanisms, our policy is asymptotically optimal; that is, its T-period revenue loss relative to a clairvoyant who knows the demand function and the reference-price updating mechanism grows at the smallest possible rate in T. We also extend our analysis to the case of a fixed reference price and show how reference effects increase the complexity of dynamic pricing with demand learning in this case. Moreover, we study the case in which customers are gain-seeking and design asymptotically optimal policies for this case. Finally, we design and analyze an asymptotically optimal statistical test for detecting whether customers are loss-averse or gain-seeking. This paper was accepted by Omar Besbes, revenue management and market analytics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zbzfp发布了新的文献求助10
2秒前
2秒前
苹果颖完成签到,获得积分10
3秒前
慕青应助念一采纳,获得10
4秒前
呜哈哈完成签到 ,获得积分10
4秒前
4秒前
量子星尘发布了新的文献求助10
7秒前
9秒前
9秒前
CipherSage应助帅气的Taq酶采纳,获得10
11秒前
12秒前
自信完成签到 ,获得积分10
13秒前
keyannn完成签到,获得积分10
13秒前
13秒前
温柔柜子发布了新的文献求助80
14秒前
14秒前
lxl220发布了新的文献求助10
14秒前
syzz完成签到,获得积分20
15秒前
Akim应助jm采纳,获得30
16秒前
17秒前
17秒前
eric888应助默默善愁采纳,获得150
17秒前
帅气西牛完成签到,获得积分10
17秒前
21秒前
茉莉发布了新的文献求助10
23秒前
望十五月发布了新的文献求助10
23秒前
慢漫发布了新的文献求助10
23秒前
24秒前
qiukui完成签到,获得积分10
24秒前
西西发布了新的文献求助10
24秒前
求知发布了新的文献求助10
26秒前
28秒前
可爱的函函应助zbzfp采纳,获得10
28秒前
乐观秋荷完成签到,获得积分10
31秒前
31秒前
Ava应助高高的平安采纳,获得10
32秒前
张永媚完成签到,获得积分10
32秒前
JamesPei应助四十采纳,获得10
34秒前
量子星尘发布了新的文献求助10
35秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5696091
求助须知:如何正确求助?哪些是违规求助? 5105380
关于积分的说明 15218112
捐赠科研通 4852172
什么是DOI,文献DOI怎么找? 2602992
邀请新用户注册赠送积分活动 1554614
关于科研通互助平台的介绍 1512681