Imperceptible and Robust Backdoor Attack in 3D Point Cloud

后门 计算机科学 点云 转化(遗传学) 人工智能 构造(python库) 旋转(数学) 云计算 算法 计算机安全 程序设计语言 生物化学 基因 操作系统 化学
作者
Kuofeng Gao,Jiawang Bai,Baoyuan Wu,Mengxi Ya,Shu‐Tao Xia
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 1267-1282 被引量:28
标识
DOI:10.1109/tifs.2023.3333687
摘要

With the thriving of deep learning in processing point cloud data, recent works show that backdoor attacks pose a severe security threat to 3D vision applications. The attacker injects the backdoor into the 3D model by poisoning a few training samples with trigger, such that the backdoored model performs well on clean samples but behaves maliciously when the trigger pattern appears. Existing attacks often insert some additional points into the point cloud as the trigger, or utilize a linear transformation (e.g., rotation) to construct the poisoned point cloud. However, the effects of these poisoned samples are likely to be weakened or even eliminated by some commonly used pre-processing techniques for 3D point cloud, e.g., outlier removal or rotation augmentation. In this paper, we propose a novel imperceptible and robust backdoor attack (IRBA) to tackle this challenge. We utilize a nonlinear and local transformation, called weighted local transformation (WLT), to construct poisoned samples with unique transformations. As there are several hyper-parameters and randomness in WLT, it is difficult to produce two similar transformations. Consequently, poisoned samples with unique transformations are likely to be resistant to aforementioned pre-processing techniques. Besides, the distortion caused by a fixed WLT is both controllable and smooth, resulting in the generated poisoned samples that are imperceptible to human inspection. Extensive experiments on three benchmark datasets and four models show that IRBA achieves $80\%+$ attack success rate (ASR) in most cases even with pre-processing techniques, which is significantly higher than previous state-of-the-art attacks. Our code is available at https://github.com/KuofengGao/IRBA .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XM完成签到,获得积分10
刚刚
leeee完成签到,获得积分10
刚刚
爆米花应助耙芋儿采纳,获得10
刚刚
隐形曼青应助唠叨的剑通采纳,获得10
刚刚
刚刚
流星雨完成签到 ,获得积分10
1秒前
1秒前
gqb发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
psy发布了新的文献求助30
1秒前
EKo完成签到,获得积分10
1秒前
1秒前
1秒前
传奇3应助慈祥的建辉采纳,获得30
1秒前
Tonsil01发布了新的文献求助10
2秒前
JamesPei应助琉璃~α采纳,获得10
2秒前
zpc完成签到,获得积分10
2秒前
2秒前
AzureWindX发布了新的文献求助10
2秒前
宁霸完成签到,获得积分0
2秒前
三金发布了新的文献求助10
3秒前
zebra8848完成签到,获得积分10
3秒前
凤迎雪飘完成签到,获得积分10
3秒前
3秒前
钊子发布了新的文献求助10
4秒前
丘比特应助miao采纳,获得10
4秒前
4秒前
5秒前
kls发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
shenwei完成签到,获得积分10
7秒前
7秒前
99完成签到,获得积分10
7秒前
Orange应助kls采纳,获得10
8秒前
科研通AI6应助凉凉盛夏采纳,获得10
8秒前
婷婷完成签到,获得积分10
8秒前
wary发布了新的文献求助10
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Item Response Theory 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5427790
求助须知:如何正确求助?哪些是违规求助? 4541692
关于积分的说明 14178129
捐赠科研通 4459258
什么是DOI,文献DOI怎么找? 2445268
邀请新用户注册赠送积分活动 1436498
关于科研通互助平台的介绍 1413803