A vision transformer‐based deep transfer learning nomogram for predicting lymph node metastasis in lung adenocarcinoma

列线图 医学 卷积神经网络 深度学习 逻辑回归 放射科 肺癌 人工智能 肿瘤科 内科学 计算机科学
作者
Chuan‐Yu Chen,Yi Luo,Qiuyang Hou,Jun Qiu,Shuya Yuan,Kexue Deng
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17414
摘要

Abstract Background Lymph node metastasis (LNM) plays a crucial role in the management of lung cancer; however, the ability of chest computed tomography (CT) imaging to detect LNM status is limited. Purpose This study aimed to develop and validate a vision transformer‐based deep transfer learning nomogram for predicting LNM in lung adenocarcinoma patients using preoperative unenhanced chest CT imaging. Methods This study included 528 patients with lung adenocarcinoma who were randomly divided into training and validation cohorts at a 7:3 ratio. The pretrained vision transformer (ViT) was utilized to extract deep transfer learning (DTL) feature, and logistic regression was employed to construct a ViT‐based DTL model. Subsequently, the model was compared with six classical convolutional neural network (CNN) models. Finally, the ViT‐based DTL signature was combined with independent clinical predictors to construct a ViT‐based deep transfer learning nomogram (DTLN). Results The ViT‐based DTL model showed good performance, with an area under the curve (AUC) of 0.821 (95% CI, 0.775–0.867) in the training cohort and 0.825 (95% CI, 0.758–0.891) in the validation cohort. The ViT‐based DTL model demonstrated comparable performance to classical CNN models in predicting LNM, and the ViT‐based DTL signature was then used to construct ViT‐based DTLN with independent clinical predictors such as tumor maximum diameter, location, and density. The DTLN achieved the best predictive performance, with AUCs of 0.865 (95% CI, 0.827–0.903) and 0.894 (95% CI, 0845–0942), respectively, surpassing both the clinical factor model and the ViT‐based DTL model ( p < 0.001). Conclusion This study developed a new DTL model based on ViT to predict LNM status in lung adenocarcinoma patients and revealed that the performance of the ViT‐based DTL model was comparable to that of classical CNN models, confirming that ViT was viable for deep learning tasks involving medical images. The ViT‐based DTLN performed exceptionally well and can assist clinicians and radiologists in making accurate judgments and formulating appropriate treatment plans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助Zzzzz采纳,获得10
刚刚
游艺完成签到 ,获得积分10
10秒前
liciky完成签到 ,获得积分10
16秒前
29秒前
安彩青完成签到 ,获得积分10
30秒前
li8888lili8888完成签到 ,获得积分10
31秒前
哈哈哈完成签到 ,获得积分10
45秒前
50秒前
uuuu完成签到 ,获得积分10
50秒前
碧蓝可仁完成签到 ,获得积分10
50秒前
自然归尘完成签到 ,获得积分10
54秒前
山橘月发布了新的文献求助10
55秒前
wuqi完成签到 ,获得积分10
55秒前
sophia完成签到 ,获得积分10
58秒前
58秒前
白昼の月完成签到 ,获得积分0
1分钟前
Nola完成签到 ,获得积分10
1分钟前
缘分完成签到 ,获得积分10
1分钟前
甜蜜代双完成签到 ,获得积分10
1分钟前
叮叮当当完成签到,获得积分10
1分钟前
LEE佳完成签到 ,获得积分10
1分钟前
快乐的完成签到 ,获得积分10
1分钟前
Jasper应助科研通管家采纳,获得10
1分钟前
归尘应助科研通管家采纳,获得10
1分钟前
归尘应助科研通管家采纳,获得10
1分钟前
1分钟前
归尘应助科研通管家采纳,获得10
1分钟前
归尘应助科研通管家采纳,获得10
1分钟前
Zzzzz完成签到,获得积分10
1分钟前
1分钟前
欣喜的缘分完成签到 ,获得积分10
1分钟前
haralee完成签到 ,获得积分10
1分钟前
JJ完成签到 ,获得积分10
1分钟前
Zzzzz发布了新的文献求助10
1分钟前
1分钟前
2分钟前
bono完成签到 ,获得积分10
2分钟前
搬砖的化学男完成签到 ,获得积分0
2分钟前
光亮若翠完成签到,获得积分10
2分钟前
嘉星糖完成签到,获得积分10
2分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780879
求助须知:如何正确求助?哪些是违规求助? 3326359
关于积分的说明 10226694
捐赠科研通 3041539
什么是DOI,文献DOI怎么找? 1669502
邀请新用户注册赠送积分活动 799081
科研通“疑难数据库(出版商)”最低求助积分说明 758732