High Electron Mobility in Si-Doped Two-Dimensional β-Ga2O3 Tuned Using Biaxial Strain

材料科学 兴奋剂 带隙 电子迁移率 极限抗拉强度 直接和间接带隙 凝聚态物理 从头算 半导体 电子能带结构 光电子学 复合材料 化学 物理 有机化学
作者
Hui Zeng,Chao Ma,Meng Wu
出处
期刊:Materials [MDPI AG]
卷期号:17 (16): 4008-4008 被引量:4
标识
DOI:10.3390/ma17164008
摘要

Two-dimensional (2D) semiconductors have attracted much attention regarding their use in flexible electronic and optoelectronic devices, but the inherent poor electron mobility in conventional 2D materials severely restricts their applications. Using first-principles calculations in conjunction with Boltzmann transport theory, we systematically investigated the Si-doped 2D β-Ga2O3 structure mediated by biaxial strain, where the structural stabilities were determined by formation energy, phonon spectrum, and ab initio molecular dynamic simulation. Initially, the band gap values of Si-doped 2D β-Ga2O3 increased slightly, followed by a rapid decrease from 2.46 eV to 1.38 eV accompanied by strain modulations from −8% compressive to +8% tensile, which can be ascribed to the bigger energy elevation of the σ* anti-bonding in the conduction band minimum than that of the π bonding in the valence band maximum. Additionally, band structure calculations resolved a direct-to-indirect transition under the tensile strains. Furthermore, a significantly high electron mobility up to 4911.18 cm2 V−1 s−1 was discovered in Si-doped 2D β-Ga2O3 as the biaxial tensile strain approached 8%, which originated mainly from the decreased quantum confinement effect on the surface. The electrical conductivity was elevated with the increase in tensile strain and the enhancement of temperature from 300 K to 800 K. Our studies demonstrate the tunable electron mobilities and band structures of Si-doped 2D β-Ga2O3 using biaxial strain and shed light on its great potential in nanoscale electronics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
superxin完成签到,获得积分10
刚刚
1秒前
x2222完成签到,获得积分20
1秒前
科研通AI6应助zhanghao采纳,获得10
1秒前
2秒前
3秒前
科研丁完成签到,获得积分10
3秒前
bkagyin应助李卓航采纳,获得10
4秒前
美好沂完成签到,获得积分10
5秒前
5秒前
6秒前
彗星入梦发布了新的文献求助10
6秒前
6秒前
33完成签到 ,获得积分10
7秒前
瓶覗发布了新的文献求助10
7秒前
无头骑士应助田彬杰采纳,获得20
7秒前
温婉的凌寒完成签到,获得积分10
7秒前
larsy完成签到,获得积分10
7秒前
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
爆米花应助须尽欢采纳,获得10
8秒前
9秒前
9秒前
乐观小之发布了新的文献求助10
10秒前
10秒前
larsy发布了新的文献求助10
11秒前
打打应助炙热果汁采纳,获得10
11秒前
11秒前
玛卡巴卡发布了新的文献求助10
12秒前
13秒前
四氧化三铁完成签到,获得积分10
13秒前
14秒前
小京子发布了新的文献求助20
14秒前
两张发布了新的文献求助10
14秒前
14秒前
秋辞完成签到,获得积分10
15秒前
QuarkQD完成签到 ,获得积分10
16秒前
乐观小之完成签到,获得积分0
16秒前
诚心的梅完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637511
求助须知:如何正确求助?哪些是违规求助? 4743448
关于积分的说明 14999325
捐赠科研通 4795636
什么是DOI,文献DOI怎么找? 2562096
邀请新用户注册赠送积分活动 1521574
关于科研通互助平台的介绍 1481559