亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Current strategies to address data scarcity in artificial intelligence-based drug discovery: A comprehensive review

计算机科学 药物发现 稀缺 数据科学 电流(流体) 人工智能 机器学习 生物信息学 工程类 生物 电气工程 经济 微观经济学
作者
Amit Gangwal,Azim Ansari,Iqrar Ahmad,Abul Kalam Azad,Wan Mohd Azizi Wan Sulaiman
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:179: 108734-108734 被引量:45
标识
DOI:10.1016/j.compbiomed.2024.108734
摘要

Artificial intelligence (AI) has played a vital role in computer-aided drug design (CADD). This development has been further accelerated with the increasing use of machine learning (ML), mainly deep learning (DL), and computing hardware and software advancements. As a result, initial doubts about the application of AI in drug discovery have been dispelled, leading to significant benefits in medicinal chemistry. At the same time, it is crucial to recognize that AI is still in its infancy and faces a few limitations that need to be addressed to harness its full potential in drug discovery. Some notable limitations are insufficient, unlabeled, and non-uniform data, the resemblance of some AI-generated molecules with existing molecules, unavailability of inadequate benchmarks, intellectual property rights (IPRs) related hurdles in data sharing, poor understanding of biology, focus on proxy data and ligands, lack of holistic methods to represent input (molecular structures) to prevent pre-processing of input molecules (feature engineering), etc. The major component in AI infrastructure is input data, as most of the successes of AI-driven efforts to improve drug discovery depend on the quality and quantity of data, used to train and test AI algorithms, besides a few other factors. Additionally, data-gulping DL approaches, without sufficient data, may collapse to live up to their promise. Current literature suggests a few methods, to certain extent, effectively handle low data for better output from the AI models in the context of drug discovery. These are transferring learning (TL), active learning (AL), single or one-shot learning (OSL), multi-task learning (MTL), data augmentation (DA), data synthesis (DS), etc. One different method, which enables sharing of proprietary data on a common platform (without compromising data privacy) to train ML model, is federated learning (FL). In this review, we compare and discuss these methods, their recent applications, and limitations while modeling small molecule data to get the improved output of AI methods in drug discovery. Article also sums up some other novel methods to handle inadequate data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彩虹儿完成签到,获得积分0
23秒前
33秒前
xxxxxxh发布了新的文献求助10
37秒前
xxxxxxh完成签到,获得积分10
43秒前
52秒前
方沅发布了新的文献求助30
58秒前
1分钟前
walter发布了新的文献求助10
1分钟前
盼芙完成签到 ,获得积分10
1分钟前
方沅完成签到,获得积分10
1分钟前
1分钟前
傲娇老五发布了新的文献求助10
1分钟前
2分钟前
Pinocchior发布了新的文献求助30
2分钟前
科研通AI5应助Pinocchior采纳,获得30
2分钟前
Pinocchior完成签到,获得积分10
2分钟前
Jayzie完成签到 ,获得积分10
2分钟前
3分钟前
赫赫发布了新的文献求助10
3分钟前
tutu完成签到,获得积分10
3分钟前
宅心仁厚完成签到 ,获得积分10
4分钟前
小马甲应助bbband采纳,获得10
5分钟前
依然灬聆听完成签到,获得积分10
5分钟前
5分钟前
bbband发布了新的文献求助10
5分钟前
bbband完成签到,获得积分10
5分钟前
ffff完成签到 ,获得积分10
6分钟前
酷波er应助小程同学采纳,获得10
6分钟前
obedVL完成签到,获得积分10
6分钟前
小程同学完成签到,获得积分10
6分钟前
6分钟前
小程同学发布了新的文献求助10
6分钟前
团子完成签到 ,获得积分10
7分钟前
muhum完成签到 ,获得积分10
7分钟前
7分钟前
WLL完成签到,获得积分20
7分钟前
WLL发布了新的文献求助10
7分钟前
赫赫发布了新的社区帖子
7分钟前
小飞猪发布了新的文献求助10
8分钟前
乐乐应助小飞猪采纳,获得10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 800
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4773499
求助须知:如何正确求助?哪些是违规求助? 4107085
关于积分的说明 12704445
捐赠科研通 3827390
什么是DOI,文献DOI怎么找? 2111614
邀请新用户注册赠送积分活动 1135594
关于科研通互助平台的介绍 1018602