Scalable Fuzzy Clustering With Collaborative Structure Learning and Preservation

聚类分析 模糊聚类 可扩展性 计算机科学 相似性(几何) 模糊逻辑 人工智能 机器学习 代表(政治) 数据挖掘 图形 离群值 模式识别(心理学) 理论计算机科学 数据库 政治 政治学 法学 图像(数学)
作者
Bingbing Jiang,Chenglong Zhang,Zhongli Wang,Xinyan Liang,Peng Zhou,Liang Du,Qinghua Zhang,Weiping Ding,Yi Liu
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:33 (9): 3047-3060
标识
DOI:10.1109/tfuzz.2025.3581679
摘要

To partition samples into distinct clusters, Fuzzy C-Means (FCM) calculates the membership degrees of samples to cluster centers and provides soft labels, gaining significant attention in recent years. However, existing FCM methods encounter the following challenges. First, traditional FCM focuses on learning membership degrees, neglecting the data similarity structures. Second, graph-based FCM typically separates graph construction from clustering, overlooking the knowledge interaction between graphs and clustering, obtaining suboptimal performance. Third, exploring the similarity structures among all samples is computationally expensive for large-scale tasks. To solve these dilemmas, we propose a scalable fuzzy clustering with collaborative structure learning and preservation (CSLP), which simultaneously leverages both cluster information and similarity structures to learn an optimal membership degree representation. Specifically, a self-weighted manner is devised to measure the sample importance, thereby reducing the adverse impacts of outliers. Moreover, the graph is updated according to the data similarities in the membership degree representation, such that CSLP collaboratively learns the graph and membership degrees in a mutually reinforcing manner. Thus, the similarity structures are fully explored during clustering processes and preserved in the learned membership degrees, enhancing the discrimination of clustering labels. To further improve efficiency, an acceleration solution is developed to reduce the computational cost of CSLP by propagating membership degrees from potential centers to samples, making CSLP scalable for large-scale tasks. An iterative strategy is designed to solve the formulated objective function. Extensive experiments demonstrate that CSLP outperforms other fuzzy clustering methods in terms of both effectiveness and scalability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
神奇科研圆完成签到,获得积分10
1秒前
魔幻的映波完成签到,获得积分10
2秒前
冬无青山发布了新的文献求助10
2秒前
2秒前
火力全开完成签到,获得积分10
3秒前
冷冷暴力完成签到,获得积分10
3秒前
4秒前
bzlish发布了新的文献求助10
4秒前
KING发布了新的文献求助10
6秒前
kelsiwang完成签到,获得积分10
7秒前
穆三问完成签到,获得积分10
8秒前
FashionBoy应助怕黑捕采纳,获得10
8秒前
小uu完成签到,获得积分10
8秒前
水蓝丨剑月完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
暴发户完成签到,获得积分10
10秒前
千秋竞岁完成签到,获得积分10
10秒前
13秒前
脑洞疼应助前列线采纳,获得10
14秒前
gege发布了新的文献求助10
15秒前
Garfield完成签到 ,获得积分10
15秒前
CipherSage应助暴发户采纳,获得10
15秒前
15秒前
lijiale完成签到 ,获得积分10
17秒前
Leo发布了新的文献求助10
17秒前
bzlish发布了新的文献求助10
18秒前
19秒前
2Y_DADA完成签到,获得积分10
19秒前
19秒前
20秒前
小张同学发布了新的文献求助10
20秒前
大个应助余南采纳,获得10
21秒前
21秒前
丸子发布了新的文献求助10
21秒前
22秒前
科研通AI6应助bzlish采纳,获得10
24秒前
FashionBoy应助bzlish采纳,获得10
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642956
求助须知:如何正确求助?哪些是违规求助? 4760206
关于积分的说明 15019456
捐赠科研通 4801457
什么是DOI,文献DOI怎么找? 2566751
邀请新用户注册赠送积分活动 1524614
关于科研通互助平台的介绍 1484236