Non‐stationary transformers‐based model for predicting liver motion for interleaved two‐dimensional cine magnetic resonance imaging

计算机科学 人工智能 多叶准直器 计算机视觉 矢状面 医学影像学 磁共振成像 质心 稳健性(进化) 均方误差 白噪声 噪音(视频) 迭代重建 运动估计 核医学 统计模型 图像配准 曲线拟合 冠状面 图像处理 运动模糊 运动(物理) 歪斜 匹配移动
作者
Suzune Shimizu,Masato Tsuneda,Kota Abe,T. Uno,Hiroki Suyari,Yasukuni Mori
出处
期刊:Medical Physics [Wiley]
卷期号:53 (1): e70241-e70241
标识
DOI:10.1002/mp.70241
摘要

Abstract Background Magnetic resonance (MR)‐guided online adaptive radiation therapy (MRgOART) has attracted increasing attention owing to its capabilities to create daily adaptation plans and perform real‐time motion management. However, during multileaf collimator (MLC) tracking, MRgOART systems face a latency of ∼300 ms, which can compromise treatment accuracy. Therefore, predictive models for respiratory‐induced liver motion are essential to compensate for system delays and enable precise MLC tracking. Purpose This study aims to develop a respiratory motion prediction model based on non‐stationary transformers (NsTransformers) using cine MR images acquired using interleaved imaging on the Elekta Unity system. The performance of the proposed model is compared with that of iTransformers, bidirectional long short‐term memory (LSTM) with an attention mechanism (biLSTM‐ATT), LSTM and linear regression models to evaluate its potential for real‐time clinical applications. Methods Seventeen liver cancer patients treated with MRgOART were enrolled. Coronal and sagittal cine MR images were selected from three‐plane interleaved images during free breathing or abdominal compression. Respiratory motion was defined as the displacement of the centroid position of the liver obtained via intensity‐based deformable image registration. Data augmentation techniques, including random noise addition, amplitude modulation, and frequency transformation, were used to expand the training dataset. The NsTransformers model was trained to predict future centroid positions at forecasting horizons of 200, 400, and 600 ms. The root mean square error (RMSE) and margin‐based accuracy were used as evaluation metrics, and the statistical significance of the models was assessed using the Friedman and Nemenyi tests. Results The NsTransformers model consistently outperformed all comparative models across all forecast intervals. The RMSE results of the NsTransformers model were superior to those of the other models, with the NsTransformers model demonstrating statistically significant improvements ( p < 0.05) compared to the other models. In addition, the NsTransformers model achieved a higher margin‐based accuracy across multiple prediction margins. The computation time of the NsTransformers model was ∼5 ms per prediction, which is sufficiently short for real‐time applications. However, the prediction accuracy degraded under conditions of irregular respiratory motion. Conclusion A motion prediction model based on NsTransformers that effectively predicts respiratory‐induced liver motion from interleaved cine MR images was developed. The model demonstrated superior prediction accuracy compared with all comparative models and holds promise in compensating for latency in MRgOART MLC tracking.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GIGIzz关注了科研通微信公众号
刚刚
qin发布了新的文献求助10
1秒前
Wj妮完成签到,获得积分10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
大斐来过发布了新的文献求助10
1秒前
logitech发布了新的文献求助10
1秒前
木木完成签到,获得积分20
1秒前
李爱国应助1221采纳,获得10
2秒前
2秒前
2秒前
单半青完成签到,获得积分10
2秒前
xide完成签到,获得积分10
2秒前
3秒前
Flying016发布了新的文献求助10
3秒前
幻华发布了新的文献求助10
4秒前
4秒前
小蘑菇应助Great采纳,获得10
4秒前
橙子完成签到,获得积分10
4秒前
4秒前
5秒前
小马完成签到 ,获得积分20
5秒前
wzm发布了新的文献求助10
5秒前
5秒前
wanci应助戴玉梅采纳,获得10
6秒前
英姑应助张三采纳,获得10
6秒前
6秒前
小小户完成签到 ,获得积分10
6秒前
7秒前
7秒前
7秒前
梁子明完成签到,获得积分20
7秒前
完美世界应助zl采纳,获得10
8秒前
科研通AI6应助王阳洋采纳,获得10
8秒前
rendong4009发布了新的文献求助10
9秒前
9秒前
9秒前
yyy完成签到,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653664
求助须知:如何正确求助?哪些是违规求助? 4790471
关于积分的说明 15065629
捐赠科研通 4812355
什么是DOI,文献DOI怎么找? 2574458
邀请新用户注册赠送积分活动 1530009
关于科研通互助平台的介绍 1488710