A comparative study of deep reinforcement learning based energy management strategy for hybrid electric vehicle

强化学习 电池(电) 汽车工程 燃料效率 电动汽车 工程类 能源管理 行驶循环 参数统计 能源消耗 利用 模拟 计算机科学 能量(信号处理) 人工智能 电气工程 数学 功率(物理) 物理 统计 量子力学 计算机安全
作者
Zexing Wang,Hongwen He,Jiankun Peng,Weiqi Chen,Changcheng Wu,Yi Fan,Jiaxuan Zhou
出处
期刊:Energy Conversion and Management [Elsevier BV]
卷期号:293: 117442-117442 被引量:20
标识
DOI:10.1016/j.enconman.2023.117442
摘要

Energy management strategies (EMSs) are essential for hybrid electric vehicles (HEVs), as they can further exploit the potential of HEVs to save energy and reduce emissions. Research on deep reinforcement learning (DRL)-based EMSs is developing rapidly. However, most studies have ignored the impact of uniform test benchmarks on the performance of DRL-based EMS and focus too much on fuel economy improvement resulting in a single optimization objective. In this study, four DRL-based EMSs are designed for HEVs with a multi-objective optimization reward function that considers battery health furtherly. The optimal learning rates and weight coefficients of the four EMSs are determined first. Based on this, the monetary cost, fuel cost, and battery health of each EMS are intensively studied under nine driving cycles. The EMSs perform better in high-speed conditions and worse in suburban conditions are initially concluded. A comparative analysis under unlearned mixed driving cycles validates this conclusion and shows that the SAC-based EMS achieves a fuel consumption of 4.218L per 100 km and 99.96 % battery health, which are the lowest of the four EMSs. This paper can provide a theoretical basis for the parametric and driving cycle study of DRL-based EMSs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助zhanghhsnow采纳,获得20
刚刚
长情尔曼完成签到,获得积分10
1秒前
青岩完成签到 ,获得积分10
1秒前
1秒前
1秒前
Wang发布了新的文献求助10
2秒前
专注秋尽完成签到,获得积分10
2秒前
2秒前
2秒前
刘十三发布了新的文献求助10
2秒前
3秒前
科研通AI5应助xuhang采纳,获得10
3秒前
3秒前
3秒前
七月完成签到,获得积分20
3秒前
迅速中蓝完成签到,获得积分10
4秒前
4秒前
4秒前
阿威完成签到,获得积分10
4秒前
隐形曼青应助务实的犀牛采纳,获得10
5秒前
6秒前
6秒前
长情尔曼发布了新的文献求助10
6秒前
sdl发布了新的文献求助10
6秒前
Shinewei发布了新的文献求助10
7秒前
小马甲应助ZZY采纳,获得10
7秒前
7秒前
7秒前
7秒前
lpydz完成签到,获得积分10
7秒前
青藤发布了新的文献求助80
8秒前
8秒前
8秒前
Firenze发布了新的文献求助10
9秒前
10秒前
科研通AI5应助云飞采纳,获得10
10秒前
Cx330发布了新的文献求助10
10秒前
10秒前
青岩发布了新的文献求助10
11秒前
lalala发布了新的文献求助10
11秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3809673
求助须知:如何正确求助?哪些是违规求助? 3354199
关于积分的说明 10369497
捐赠科研通 3070479
什么是DOI,文献DOI怎么找? 1686340
邀请新用户注册赠送积分活动 810900
科研通“疑难数据库(出版商)”最低求助积分说明 766433