Multiobjective optimization of laser welding parameters for P92 steel based on MFO/MOEAD-Kriging

克里金 焊接 计算机科学 工程类 机械工程 机器学习
作者
Bo Yan,Yonghuan Guo,Xiying Fan,Jinyue Zhao,Xiangning Lu,Xinran Zhang,Lihang Ma
标识
DOI:10.1177/09544089241239309
摘要

P92 steel is used in steam equipment of thermal power plants and nuclear power plants. It needs to withstand high temperature and high pressure during service, so high-quality welds are required. Laser welding can easily obtain good weld quality and reduce the probability of coarse grains and welding defects in the heat-affected zone. Post-weld deformation, residual stress, and weld hardness are important indexes for evaluating weld quality, which largely depends on the combination of laser welding process parameters. The multiobjective optimization methods of moth-flame optimization (MFO) and multiobjective evolutionary algorithm based on decomposition under the Kriging model were compared in this research. It was found that the MFO algorithm has a faster optimization speed and better overall effect. The Optimal Latin hypercube sampling method was used to design the simulation test. The welding seam-forming process was simulated by the SYSWELD software. The Kriging model was used to make the nonlinear relationship between the process parameters and the weld quality indexes significant. A new data set was designed to evaluate the accuracy of the model. On this basis, the efficiency of the combination of process parameters optimized by the two algorithms was compared. The simulation and experimental results were in good agreement with the multiobjective optimization results of the MFO. In the experimental verification, the optimized weld quality was analyzed from the aspects of microstructure and mechanical properties. The results showed that the multiobjective optimization method quickly and effectively reduces the probability of weld quality defects in actual welding, thereby improving weld quality. This multiobjective optimization method provides valuable research ideas for engineering research and development to effectively shorten its development cycle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
徐徐科研一百分完成签到,获得积分10
刚刚
炫炫炫发布了新的文献求助10
刚刚
刚刚
王宇座应助小柒采纳,获得20
刚刚
hdc12138完成签到,获得积分10
1秒前
唯美完成签到,获得积分10
1秒前
T拐拐发布了新的文献求助10
1秒前
1秒前
平常的问雁完成签到 ,获得积分10
2秒前
星辰大海应助violin采纳,获得200
2秒前
青木聪聪完成签到,获得积分10
2秒前
zhuan完成签到,获得积分10
2秒前
ding应助曦谷采纳,获得10
2秒前
秋澄完成签到 ,获得积分10
2秒前
grgr完成签到,获得积分10
2秒前
3秒前
euruss发布了新的文献求助10
3秒前
3秒前
凌波漫步完成签到,获得积分10
3秒前
RickT发布了新的文献求助10
3秒前
KXQ发布了新的文献求助10
4秒前
lilyvan完成签到 ,获得积分10
4秒前
4秒前
SciGPT应助甜美三娘采纳,获得10
4秒前
科研通AI6应助hsy309采纳,获得30
4秒前
4秒前
myLv98完成签到,获得积分10
5秒前
5秒前
英俊的铭应助Asuka采纳,获得10
5秒前
科研民工完成签到,获得积分10
5秒前
小毛完成签到,获得积分20
5秒前
5秒前
scitester发布了新的文献求助10
5秒前
leezhen完成签到,获得积分10
6秒前
传奇3应助dagongren采纳,获得10
6秒前
平淡思远完成签到,获得积分10
6秒前
zzx完成签到,获得积分10
6秒前
田様应助费城青年采纳,获得10
6秒前
7秒前
风中的哈密瓜完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402308
求助须知:如何正确求助?哪些是违规求助? 4520855
关于积分的说明 14082461
捐赠科研通 4434876
什么是DOI,文献DOI怎么找? 2434481
邀请新用户注册赠送积分活动 1426661
关于科研通互助平台的介绍 1405415