已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Circumstance-aware Neural Framework for Explainable Legal Judgment Prediction

计算机科学 人工智能 人工神经网络 机器学习 数据科学 数据挖掘
作者
Linan Yue,Qi Liu,Binbin Jin,Han Wu,Yanqing An
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:36 (11): 5453-5467 被引量:2
标识
DOI:10.1109/tkde.2024.3387580
摘要

Massive legal documents have promoted the application of legal intelligence. Among them, Legal Judgment Prediction (LJP) has emerged as a critical task, garnering significant attention. LJP aims to predict judgment results for multiple subtasks, including charges, law articles, and terms of penalty. Existing studies primarily focus on utilizing the entire factual description to produce judgment results, overlooking the practical judicial scenario where judges consider various crime circumstances to decide verdicts and sentencing. To this end, in this paper, we propose a circumstance-aware LJP framework (i.e., NeurJudge) by exploring the circumstances of crime. Specifically, NeurJudge first separates the factual description into different circumstances with the predicted results of intermediate subtasks and then employs them to yield results of other subtasks. Besides, as confusing verdicts may degrade the performance of LJP, we further develop a variant of NeurJudge (NeurJudge+) that incorporates the semantics of labels (charges and law articles) into facts to yield more expressive and distinguishable fact representations. Finally, to provide explanations for LJP, we extend NeurJudge to an explainable LJP framework E-NeurJudge with a cooperative teacher-student system. The teacher system is NeurJudge which exploits legal particularities well but lacks explanation capability. The student system is a rationalization method that provides explainability but fails to utilize legal particularities. To combine the advantages of the above methods, we use a transferring function to transfer legal particularities from the teacher to the student, making a trade-off between yielding LJP results and rendering them explainable. Extensive experimental results on real-world datasets validate the effectiveness of our proposed frameworks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
英俊的平凡完成签到,获得积分10
3秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
6秒前
华仔应助甜糖弟弟采纳,获得10
6秒前
阿拉丁神梅完成签到,获得积分10
9秒前
9秒前
热情的寄瑶完成签到 ,获得积分10
9秒前
无花果应助英俊的平凡采纳,获得10
9秒前
零零二完成签到 ,获得积分10
11秒前
16秒前
Ran666778发布了新的文献求助30
19秒前
千空完成签到,获得积分10
21秒前
25秒前
春酒4完成签到,获得积分10
26秒前
28秒前
量子星尘发布了新的文献求助10
30秒前
30秒前
30秒前
31秒前
玛卡巴卡发布了新的文献求助10
31秒前
gu完成签到,获得积分10
33秒前
脑洞疼应助王佳佳采纳,获得10
34秒前
NagatoYuki完成签到,获得积分10
34秒前
平淡的天思完成签到,获得积分10
34秒前
35秒前
35秒前
Jelly发布了新的文献求助10
37秒前
与月同行完成签到,获得积分10
39秒前
慕青应助李李李李李采纳,获得10
39秒前
39秒前
43秒前
48秒前
zydong完成签到,获得积分10
49秒前
忧伤的冰薇完成签到 ,获得积分10
49秒前
西瓜完成签到 ,获得积分10
50秒前
52秒前
53秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3863862
求助须知:如何正确求助?哪些是违规求助? 3406073
关于积分的说明 10648367
捐赠科研通 3129969
什么是DOI,文献DOI怎么找? 1726178
邀请新用户注册赠送积分活动 831531
科研通“疑难数据库(出版商)”最低求助积分说明 779888