计算机科学
推荐系统
期限(时间)
计算复杂性理论
集合(抽象数据类型)
机器学习
人工智能
数据挖掘
算法
物理
量子力学
程序设计语言
作者
Muyang Li,Zijian Zhang,Xiangyu Zhao,Wanyu Wang,Minghao Zhao,Runze Wu,Guo, Ruocheng
标识
DOI:10.1145/3543507.3583440
摘要
Sequential recommender systems aim to predict users' next interested item given their historical interactions. However, a long-standing issue is how to distinguish between users' long/short-term interests, which may be heterogeneous and contribute differently to the next recommendation. Existing approaches usually set pre-defined short-term interest length by exhaustive search or empirical experience, which is either highly inefficient or yields subpar results. The recent advanced transformer-based models can achieve state-of-the-art performances despite the aforementioned issue, but they have a quadratic computational complexity to the length of the input sequence. To this end, this paper proposes a novel sequential recommender system, AutoMLP, aiming for better modeling users' long/short-term interests from their historical interactions. In addition, we design an automated and adaptive search algorithm for preferable short-term interest length via end-to-end optimization. Through extensive experiments, we show that AutoMLP has competitive performance against state-of-the-art methods, while maintaining linear computational complexity.
科研通智能强力驱动
Strongly Powered by AbleSci AI